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Abstract. Can we predict wars? How certain would we be in our pre-
dictions? This research presents the first publicly available and explain-
able early conflict forecasting model capable of forecasting distribution
of conflict-related fatalities on a country-month level. The model seeks
to be maximally transparent, uses publicly available data and produces
predictions up to 14 months into the future. Our model improves over
3 out of 4 benchmark years but misses the violence spikes, possibly, due
to the nature of independent variables in the dataset. The presented
model can complement the field of conflict-warning systems and serve as
a reference against which future improvements can be evaluated.

Keywords: Interstate conflict modelling · Early Conflict Warning Sys-
tem · Fatalities prediction · Predicting with uncertainty

1 Introduction

A new wave of violent conflicts around the world raises concerns about the se-
curity of the whole world. According to the ACLED1 Conflict Index 12% more
conflicts occurred in 2023 compared to 2022, and the amount of conflict increased
by 40% compared to 2020. An underlying assumption and motivation of conflict
early warning systems is that enhanced prediction and forecasting can better
inform decision-making, reduce risk, and trigger more robust prevention and
response measures from international actors. Policymakers are interested in un-
covering the conflict dynamics and making robust forecasts to take anticipatory
actions and reduce the impact on vulnerable people. At the same time, regular
citizens are looking for accurate and not biased forecasts for their own security
and awareness.

A decade ago inspiring studies of Hedge et al. [1] and Chadefaux [2] marked
a path towards a new generation of models - production-ready Early Conflict
Warning Systems. By now at least a couple of dozen Early Conflict Warning
Systems are deployed and to some degree are used for decision-making [3, 4].
Great progress in this development was thanks to the first prediction competition
organized by the ViEWS2 academic consortium in 2020. The competition focused
1 Armed Conflict Location and Event Data
2 The Violence & Impacts Early-Warning System

https://acleddata.com/
https://viewsforecasting.org/
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on increasing the accuracy of the state-of-the-art conflict prediction models and
resulted in significantly pushing state-of-the-art. The best model for prediction
on a country-month level appeared to be an ensemble of tree-based models, but
also other innovative approaches were elaborated upon such as models based on
topic modelling and alternative data sources.

When the improved models were deployed and feedback from stakeholders
was gathered, it became apparent that additional improvements were needed.
According to the feedback, the stakeholders are interested not only in the most
likely outcome (a point prediction), but also in the lower-probability risk that
conflicts escalate catastrophically (the tail ends of the probability distribution),
and understanding how uncertain the forecasts at hand are. These preferences
urge for a new generation of forecasting models that present their estimates as
probability distributions.

To address this gap, the ViEWS team has announced the second predic-
tion competition, now focusing on predicting the distribution of conflict-related
fatalities instead of simple point forecasts.

In response, this paper presents an open-source model for forecasting the
probability distribution of fatalities on a country-month level. This leads to the
central research question of this study: How can we develop a model that
accurately predicts conflict-related fatalities while also estimating the
uncertainty of these predictions?

The model presented in this paper builds upon the Natural Gradient Boosting
framework by Duan et al. [5] which allows for estimating conditional probability
distribution for each separate prediction.

The accuracy of the developed model is on par with traditional gradient
boosting techniques and improves over the heuristic benchmarks developed by
the competition organisers for 3 out of 4 prediction years.

2 Related Work

The advancements in conflict research went in waves that started as early as
the 1970s with pioneering studies of Andriole & Young[6]. However, only the
most recent advancements have brought Conflict Early Warning Systems closer
to a production-ready state. A great overview of currently deployed systems was
done by Rod et al. [3] and Muggah & Whitlock [4].

The efforts in conflict forecasting were historically divided into two categories:
theoretically supported models that utilise structural variables3 and semantic
analysis models that rely on news and political speech. Theoretically-supported
models rely on econometric data and the political background of states and
regions to predict the conflict propensity and future risk levels of states[7, 8].
Semantic analysis models focus on political event data as a basis for prediction
by using media content and verbal statements of political actors to forecast the

3 Examples of structural variables are economic and political features such as devel-
opment indexes, GDP, education, youth bulge, life expectancy, etc.
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impending escalation of conflicts in regions and states [2, 9]. Such models usually
take as input news, social media feeds or official political speech.

It was shown that theoretically supported models perform well in assessing
the country’s risk of engaging in conflict. Structural variables can explain well
an ongoing deterioration of a state or, otherwise, its successes through economic,
political and social variables. Such variables explain the capabilities of the coun-
try, and its weaknesses and thus can be well mapped to an increased or decreased
risk of conflict. On the other hand, structural variables are rarely updated and
are very slowly moving, thus often failing to forecast conflict escalations.

Another type of models, that was made possible with the recent advance-
ments in natural language processing, is the semantic analysis models. Their
strong side is that they can spot rapid changes in people’s moods as this is
highly reflected in the news and social media. Such models may be insightful for
estimating the temporal dimension of violence.

At the same time, both types of state-of-the-art models produce forecasts as
the most likely fatality number, fatality bin or risk index. As mentioned earlier,
stakeholders of the early conflict warning models wish to know not only the most
likely risk but rather its probability distribution. Such probability distribution of
the risk will allow stakeholders to prepare or respond depending on the changes
in the distribution over time. While there are multiple ways to represent a risk
of conflict, one of the most granular and easily interpretable is the amount of
fatalities due to conflict in this country.

The closest model that focuses on predicting conflict-related fatalities is the
model developed by Hegre et al. in the scope of the ViEWS project [10]. The
ViEWS Fatalities model predicts state-based fatalities on a monthly level with
global coverage. The latest release in early 2023 [11] presented an unweighted
ensemble of 21 models for making forecasts up to 36 months in advance. ViEWS
combines six types of models: Random forests, Gradient boosting models, Ex-
treme gradient boosting, Light gradient boosting, Hurdle models and Markov
models. While the ViEWS model is a great work and one of the most advanced
publicly available models, it produces the most likely point predictions without
a probability distribution.

To properly position the proposed model in this study, it is important to give
an overview of the recent impactful models in the field.

In recent years, researchers proposed multiple models of predicting military
conflict on national and sub-national levels with datasets consisting of economic
and political variables [1, 7, 12–14] As a result, conflict literature has made signif-
icant progress in understanding which countries are at risk of suffering an armed
conflict, but usually fails to accurately forecast conflict onsets in both spatial and
temporal dimensions. One of the drivers that allowed not only to improve the
accuracy of the models over time but also to understand the predictions is the
advancement in models’ explainability. The end goal of the early conflict warn-
ing system is to allow stakeholders to consult them and make decisions based
on their outputs. The model needs to be explainable to validate that, for exam-
ple, a high-risk prediction is not influenced by some misalignment in the input
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data. For instance, an inspiring study by Baillie et al. features a model using
Motre Carlo simulations to forecast conflict onset on a country-year level with
only three variables in the dataset [15]. Baillie argues that an explainable and
interpretable model is more likely to be used by policymakers. However, research
by Ettensperger shows that complex and thus unexplainable model ensembles
tend to be more accurate [16], which urges for a balance between explainability
and predictive accuracy.

Additionally, to increase the accuracy of predicting conflict onsets scholars
explored additional data sources. Chadefux proposed a conflict risk index that is
based solely on news and is meant to indicate a risk of a conflict onset [2]. Muller
& Rauh presented a latent Dirichlet allocation model for content analysis of 700
thousand English-speaking news [9] and later improved the model to include
3.5 million news and past violence data [17]. However, Bazzi et al. showed that
even access to rich historical and textual data allows for accurate forecasting of
spatial but not the temporal dimension of the conflict [18]. Moreover, Halkia et
al. found multiple problems with textual data such as bias, duplication of some
events and under-representation of others (especially in countries with severe
censorship) [19].

Because of the limitations of models described above, scholars turned to al-
ternative data sources such as night lights data [20], stock market behaviour [21],
cell phone call patterns [22], climate-sensitive models [23, 24], local peacekeeping
data [25] and remote sensing data [26]. Racek et al. attempted to forecast the
Syrian civil war onset based on remote sensing data only [27]. Their remote sens-
ing dataset comprised data on population, land-cover classes, nighttime lights,
topography, vegetation health, crops, precipitation and temperature and was
found to lead to a 1.75% predictive performance gain.

Concluding, multiple methodologies were developed in the field of conflict
modelling. The state-of-the-art models still need to increase the predictive ac-
curacy to robustly predict outbreaks of violence in previously peaceful countries
and enable more informative forecasts for stakeholders, such as probability distri-
bution forecasts. Additionally, the balance between accuracy and explainability
needs to be maintained, as the stakeholders are more likely to rely on explainable
and interpretable models.

3 Summary of contributions

As a first step towards predictions of fatalities distribution, this study focuses
on enabling an explainable model that relies on structural variables to produce
probabilistic forecasts on a country-month level.

1. We present a model for probabilistic forecasting conflict-related fatalities
based on the Natural Gradient Boosting framework (Section 4.4 for frame-
work overview).

2. We clean and improve the competition dataset by removing rows with too
many missing values and adding new dimensions of data, which results in
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increased performance (Section 4.3 for data preprocessing and Section 5 for
performance overview).

4 Methodology

This section outlines the methodologies employed to develop a predictive model
for conflict-related fatalities at the country-month level. The methodology is di-
vided into key sub-sections: an explanation of the level of analysis the model
assumes and the prediction window (Section 4.1), an overview of the original
ViEWS competition dataset (Section 4.2), data preprocessing pipeline (Sec-
tion 4.3), the employed model (Section 4.4), scoring criteria (Section 4.5), model
finetuning (Section 4.6) and overview of the heuristic competition benchmarks
(Section 4.7).

4.1 Level of analysis and prediction window

We build a model that generates forecasts at the country-month level of analysis.
The country-month level is useful for predictions of new conflicts and for mod-
elling processes at the government level. The set of countries is initially defined
according to Gleditsch&Ward (GW) country definitions [28], but later is mapped
to Correlates of War (CoW) state membership system [29] (see Section 4.3).

The competition rules define that October should be the last data point
to forecast the next calendar year. This implies that the model should make
predictions for all months from January to December of the next year based on
the data till October of the previous year. The proposed model uses one-step
ahead modelling for each of the 12 months in the test set, where each month
in the test set predicts 14 months ahead for each country. For example, if the
model produces forecasts for the whole year of 2022 the test set spans from
November 2020 to October 2021, and the train set includes every month until
September 2022 inclusive. The dependent variable shifting is discussed in detail
in Section 4.3.

4.2 Original Competition Dataset

In this study, we use the dataset published by the ViEWS team for the second
prediction competition [30]. The published dataset merges multiple open-source
datasets and adds spatial and temporal lags and decays for several features.

The dataset covers 382 months from Jan 1990 to Oct 2021 for 213 unique
country IDs (defined according to the Gleditsch & Ward system) and comprises
128 columns. The dataset includes data on fatalities per country per month
reported by the Uppsala Conflict Data Program (UCDP)4 Georeferenced Events
Dataset [31, 32], the World Development Indicators [33], data on politically
excluded ethnic groups [34], demographic factors [35], protests from ACLED [36],

4 Uppsala Conflict Data Program

https://ucdp.uu.se/
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data on institutions from V-Dem [37], and data on national water resources from
AQUASTAT [38]. Additionally, the ViEWS team engineer temporal and spatial
lag features with decays to enhance the predictive power of the dataset [39].

The dataset contains features for three types of violence coded by UCDP[40]:
Uppsala Conflict Data Program distinguishes three types of violence according
to the definitions by Melander et al. [40]: state-based conflict5, one-sided violence
against civilians6, and non-state conflict7

As for the dependent variable, we follow the ViEWS competition guidelines
and choose state-based conflict. Features for the other two types of violence fea-
tures are kept in the dataset as independent variables. It was shown by Hegre et
al. that a large share of one-sided violence against civilians and non-state con-
flict events are outcomes of state-based conflicts [1]. Much of the violence against
civilians is perpetrated by governments and rebel groups to weaken opponents,
and much non-state conflict is infighting between rebel groups that also conflict
with the government.

The distribution of the state-based fatalities is shown in Figure 1. The depen-
dent variable is highly skewed to the right (with a skewness of 17) and has a long
tail on the right side (with a kurtosis of 7810). We see that most of the countries
have near-zero numbers of fatalities with rare spikes for individual months. In-
terestingly, the whole dataset of 71,642 rows contains only 381 country-months
with more than 100 fatalities, 199 observations with more than 1,000 fatalities
and only 11 observations with more than 10,000 fatalities.

Fig. 1: Distributions of state-based fatalities. The dependent variable is highly
skewed to the right with a long tail of rare violence spikes.

5 A state-based armed conflict is a contested incompatibility that concerns government
and/or territory where the use of armed force between two parties, of which at least
one is the government of a state.

6 The deliberate use of armed force by the government of a state or by a formally
organised group against civilians.

7 The use of armed force between two organised armed groups, neither of which is the
government of a state.
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Moreover, some variables are highly correlated. The correlation of more than
|0.75| occurs for 78 out of 125 numeric variables, mostly for features from V-
Dem, World Development Indicators and some spatial decays. The full correla-
tion matrix is shown in the Appendix section A.1. These findings urge for data
preprocessing, which is discussed in the next section.

4.3 Data preprocessing

In this section, we discuss data cleansing of the original ViEWS dataset, the
creation of a dependent variable for the prediction task and the addition of the
region dimension to the dataset for enhanced region dynamics modelling.

Data cleaning We find several problems with the original dataset, namely:

– There are cases where the same country has multiple country IDs in the
same month and some variables for one of the instances are not populated.

– Some countries have too many missing structural variables. There are coun-
tries with almost all independent variables set to 0. This usually happens
for low-populated islands, micro-states, or countries that do not exist today
and lack reliable data.

To address these issues we calculate the percentage of zero values for each
country-month and the mean percentage per country. To account for the fact
that some features are spatial or temporal lags of the other, we exclude from the
analysis all spatial and temporal lag features. Additionally, as previous violence
is a good prediction of future violence and the model should be able to learn not
only fluctuations of the dependent variable but also infer future violence from
the country’s indexes, we exclude from the analysis all features that are related
to all three types of violence (see Section 4.2) and ACLED data on protests.
After the column exclusions, 89 data columns are left for analysis.

The percentage of missing values per country is defined as an average propor-
tion of zero values in a given subset of columns for this country and calculated
as follows: ∑M

m=1

(∑N
i=1 1(Xim)

N

)
M

× 100

where

– M is the amount months for an analysed country ID.
– N is the number of columns to analyse.
– 1(Xim) is the indicator function for the i-th (feature) column in the m-th

(country-month) row, defined as:

1(Xim) =

{
1 if the value in column i of row m equals 0
0 otherwise
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With the percentage of missing values calculated, the dataset is processed in
two steps:

1. Correlates-of-War mapping: An alternative to Gleditsch&Ward State
System Membership exists and was published by the Correlates of War
(CoW) project. The major difference between these systems is that CoW
does not include states with populations lower than 250,000, which auto-
matically excludes all micro-states. Microstates are insignificant actors in a
geopolitical landscape for which data collection is usually not done properly
and major datasets do not consider these countries. By manual inspection,
we found that all states from the original dataset that cannot be mapped to
the CoW system are all microstates, with more than 70% of missing values.
Thus, these countries are dropped from the dataset.

2. Dropping countries with more than 20% of zero values: Many studies
find that the previous violence is a good predictor of future violence [8, 10,
18, 41, 42]. Thus, keeping countries with only populated fatality variables
with their spatial and temporal lags and the majority of other structural
variables being 0 would only incentivise the model to ignore the country
indexes and focus on learning patterns of previous violence. To minimise
the chances of such learning, we drop all countries which have a percentage
of missing values of more than 20%. The calculation results of the mean
missing values per country are presented in Table 1. One can see that the
majority of countries with a mean zero values percentage of more than 20%
are micro-states, short-lived countries or countries for which data collection
was not reliable.

The resulting dataset comprises 177 unique country IDs under the Gled-
itsch&Ward state membership system and 169 unique country IDs under the
CoW state membership system. This difference comes from the fact that for
some states that experienced revolutions and changes in government structure
(e.g. Sudan in July 2011, Indonesia in May 2002 or multiple instances of Russia
in 1991), the Gleditsch&Ward system defines a different country ID, while CoW
keeps the same.

As the last step, the country IDs are encoded using the dummy encoding
scheme [43] according to the Gleditsch&Ward system.

Dependent variable shifting As explained in Section 4.1, the dependent vari-
able is generated by shifting the state-based fatalities column by 14 months back
to create a dependency suitable for forecasting. Because the Gleditsch&Ward
country membership system changes country ID every time the government
structure changes, the dependent variable is shifted based on CoW country
ID, which does not change in such cases. As ViEWS competition suggests, the
country-months dataset is merged with country-month ’actuals’ for the predicted
year, which creates an expected 2-month (November to January) gap between
the test set and the predicted year and as a result a gap between the train set
and the test set. The visualization of the split is provided in Figure 2.
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Country
ID Country name Percentage of

missing values (%)
Min
date

Max
date

Max
fatalities

187.000 Czechoslovakia 100.00 1990-01 1992-12 0
189.000 Russia (Soviet Union) 100.00 1990-01 1991-08 144
232.000 Kosovo 100.00 2008-03 2021-10 0
247.000 Yugoslavia 100.00 1991-11 1992-04 1284
248.000 Russia (Soviet Union) 100.00 1991-08 1991-08 0
250.000 Russia (Soviet Union) 100.00 1991-09 1991-09 0
252.000 Russia (Soviet Union) 100.00 1991-10 1991-10 0
253.000 Russia (Soviet Union) 100.00 1991-11 1991-11 1
254.000 Russia (Soviet Union) 100.00 1991-12 1991-12 0
188.000 Yugoslavia 98.88 1990-01 1991-11 351
227.000 Yugoslavia 97.75 1992-04 2006-06 560
26.0000 Bahamas 70.85 1990-01 2021-10 0
140.000 Brunei 60.67 1990-01 2021-10 0
27.0000 Belize 58.80 1990-01 2021-10 0
186.000 German Democratic Republic 49.44 1990-01 1990-10 0
197.000 Yemen, People’s Republic 49.44 1990-01 1990-05 0
198.000 Taiwan 44.20 1990-01 2021-10 0
196.000 Yemen, Arab Republic 25.84 1990-01 1990-05 0
185.000 German Federal Republic 24.72 1990-01 1990-10 1
192.000 South Africa 19.10 1990-01 1990-03 0
230.000 Serbia 17.98 2006-06 2008-02 0
191.000 Ethiopia 14.14 1990-01 1993-05 16545
180.000 Solomon Islands 13.48 1990-01 2021-10 2
83.0000 Bosnia-Herzegovina 10.71 1992-04 2021-10 4423

.... .... .... .... .... ....
Table 1: Mean percentage of missing values for Gleditsch-Ward Country IDs in
the original dataset after dropping countries that could not be mapped to the
CoW state membership system. All countries with more than 20% of missing
values (above the separator line) are dropped.

Regions addition According to multiple studies in the peace research com-
munity, adding a region component to the dataset helps in increased accuracy
or explaining variability in modelling conflict [1, 44, 45]. The intuition behind
this finding is that geographical regions share similar risk factors that drive con-
flict and define propensities for instability. Goldstone et al. in his early research
notes five regions that account for similar “regional and temporal distributions”
in both the train and test datasets [8] and Boekestein reports an increase of 2-7%
in prediction accuracy with added regions [45].

Hegre et al. presented a model that included regions as independent vari-
ables [1]. Contrary to Goldstone, Hegre defined nine regions according to the
United Nations regional definitions. He posited that the region variable improves
the quality of predictions by maximizing the explained variance in the dataset.
Still, as Hegre’s model produced forecasts up to 40 years ahead, he questioned
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Fig. 2: Train and test datasets for 2022 prediction year. The test set spans 12
months and each month in the test set predicts 14 months ahead.

the duration of this assistance for forecasts of more than a decade forecasting
horizon as the region’s heterogeneity might change over time.

To incorporate the regional dynamic, we add two categorical variables: seven
global and 23 smaller regions according to definitions by World Bank Devel-
opment Indicators. These categorical variables are encoded using the dummy
encoding scheme and added to the dataset.

Parametrization We develop logic to generate multiple versions of the dataset
to test which features yield higher accuracy and test different hypotheses. Pa-
rameters that support fine-tuning and concern data preprocessing are listed in
Table 2 under the ’Data processing parameters’ category.

Least Important Features Drop After the country IDs and regions are en-
coded the number of dimensions in the resulting dataset explodes, which may
lead to the model’s under-performance. We define the least important features
by running XGBoost regressor for each of the configurations of the dataset (see
Section 4.6) and 35 of the least important features are removed from the dataset
before the main algorithm is run.

4.4 Natural Gradient Boosting

In this section, we give a high-level overview of the algorithm used in this study
and discuss the post-processing methodology of the predictions.

Gradient boosting is a supervised learning technique where several weak
learners (or base learners) are combined in an additive ensemble [46]. The model
is learnt sequentially, where the next base learner is fit against the training ob-
jective residual of the current ensemble. The output of the fitted base learner is
then scaled by a learning rate and added to the ensemble.

Natural gradient boosting NGBoost is a framework for probabilistic predic-
tion with competitive state-of-the-art performance on a variety of datasets [5].
NGBoost combines a multi-parameter boosting algorithm with the natural gradi-
ent to efficiently estimate how parameters of the presumed outcome distribution
vary with the observed features. NGBoost can be used with any base learner, any
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family of distributions with continuous parameters, and any scoring rule. While
authors of the framework admit that point prediction will always be best with a
dedicated model for that purpose, they find the loss in RMSE is not substantial
if NGBoost is used to support probabilistic regression.

The NGBoost supports different base-learner models. In this study, we choose
to keep a default base-learner model, which is a Decision Tree. We fine-tune the
NGBoost and base learner hyperparameters in Section 4.6.

While NGBoost supports multiple distributions [47], this study tests Normal
and Poisson distributions. The Poisson distribution, being a discrete probability
distribution, models the dependent variable as a whole number. The Natural
distribution predicts the dependent variable as a real number. Since the real
number does not have a negative limit, the decent part of the predicted distribu-
tion can be negative if the prediction is around 0 but the variance is high. This
requires additional handling, as negative predictions in the context of fatalities
do not make sense. The handling of negative predictions is discussed in the next
subsection.

Handling Negative Predictions The gradient-boosting regression methods
are unaware of feature boundaries and may make negative predictions even if
the same feature was non-negative throughout the train set. While with point
prediction the negative values of fatalities are simply converted to zero, in the
case of distributions the handling of negative values in the distribution is dubious.

The ViEWS competition allows contestants to define their custom way of
post-processing predictions but specifies default handling for negative predictions
as clipping them to zero. The default clipping to zero creates a bias towards zero
value, greatly changing the predicted distribution and impacting the CRPS and
Mean Interval Score. We choose to resample the predicted distribution removing
negative values. The processing of predictions is done in two steps:

1. The model outputs 1000 predictions for each country-month in the test set.
2. All predictions are converted to integers.
3. In case some predictions have negative values, they are removed from the

prediction set and the non-negative values are randomly resampled to fill in
the created gaps.

The difference between clipping the negative predictions to 0 and resampling
is shown in Figure 3. The resampling approach shifts the mean of the predicted
distribution towards a higher value of fatalities, but, on the other hand, it does
not place a disproportionate amount of confidence in the 0 value as does clipping.
In Figure 3a, the model under-predicted fatalities, and resampling shifted the
mean further which benefited the CRPS metric; in Figure 3b, the model over-
predicted fatalities and clipping predictions to 0 benefited the CRPS metric.

Handling of removed countries The countries removed from the dataset
in section 4.2 are removed from the train and test sets, implying that we do
not evaluate predictions for countries with too many missing values. While this
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(a) Prediction distributions for Afghanistan November 2020 (month_id: 477)

(b) Prediction distributions for Pakistan July 2020 (month_id: 473)

Fig. 3: Comparison of raw, resampled and clipped fatalities distributions with
negative tails for two county-month cases.

admittedly reduces coverage of the predicted countries, on the other hand, mak-
ing a model to predict fatalities based on inputs with almost every independent
variable set to 0 is also unreliable.

4.5 Scoring Criteria

This section introduces three scoring metrics reported in this study and defined
by the ViEWS competition.

We adhere to the main evaluation metric of the competition - the Continuous
Ranked Probability Score (CRPS). The competition also defines two additional
metrics that complement the CRPS: Ignorance score and Mean Interval Scores.
We also report those metrics for comparability with other submissions of the
competition.

Continuous Ranked Probability Score (CRPS) The CRPS is a scoring
function that compares a single ground-truth value to its predicted distribution.
This property makes it relevant to Bayesian machine learning, where models
usually output distributional predictions rather than point-wise estimates. The
CRPS is defined as follows:

The continuous rank probability score is defined as:
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CRPS(F, y) =

∫
R
(F (x)− 1(x− y))2 dx (1)

where 1(z) is the indicator function, defined as

1(z) =

{
1 if z ≥ 0

0 otherwise
(2)

This metric may be viewed as a generalization of the Brier score to infinitely
small bins. Broadly, CRPS is a generalization of the mean absolute error (MAE)
for any predictive distribution: if CRPS is used to compare a ‘point’ prediction
as a cumulative distribution function with a point observation, it gives MAE.

Ignorace Score The ignorance score, which is also called the Log score, is the
log of the predictive density evaluated at the actual observation:

IGN(f, y) = − log2(f(y)) (3)

The ignorance score is the only proper local (i.e., only on the predictive den-
sity through its value at the event that materializes) scoring rule for continuous
data. The ignorance score complements the CRPS by scoring the predicted prob-
ability of the observed event, instead of the distance between the predicted and
observed. Therefore it emphasizes how much belief is focused on the observed
value.

Mean Interval Score The M4 competition [48] use the Mean Interval Scores
(MSIS). MSIS is set up as a battle between making the prediction interval as
small as possible whilst still making sure that it has a good coverage rate. It does
not consider the mass of the predictive distribution within the interval, so it is
not an accuracy metric like CRPS. The metric is a nice transition from a point
estimate to the distribution that CRPS tests. It puts the focus on the most
likely values, without narrowing to a point. The trade-off between penalizing
large intervals but rewarding coverage is useful too. The scaling in MSIS is used
to make the measure scale-independent as the M4 competition deals with a
large set of different types of time series with varying time scales and variability.
The ViEWS team has simplified this score to just the (mean) Interval Score. A
similar approach is also discussed by Gneiting & Raftery [49]. The Interval Score
is defined as:

ISit = (Uit − Lit) +
2

α
(Lit − Yit)1(Lit − Yit) +

2

α
(Yit − Uit)1(Yit − Uit) (4)

where Uit and Lit are the upper and lower prediction sample quantiles using
the set prediction interval, α = [1− (prediction interval)] (e.g., for a 95% predic-
tion interval, α = 0.05) and 1(z) is the indicator function as defined previously.
To get the Mean Interval Score, the ISit is averaged across time t and units i.
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Metrics Implementation As we use the scoring code published by ViEWS
the details on implementations of the scoring metrics can be found in the ViEWS
prediction competition invitation [30].

4.6 Model fine-tuning

This section describes how the NGBoost model was fine-tuned and details the
fine-tuned parameters.

The fine-tuning is done across all five years (from the beginning of 2018 to
the end of 2022) with the mean CRPS as a target optimisation metric and as
explained in Section 4.4 the removed countries in the data preprocessing state
are not evaluated and thus do not influence the fine-tuning process.

We perform fine-tuning using the Optuna framework [50]. We find that fine-
tuning all variables is infeasible due to the duration of the model training and
thus manually select eight variables to fine-tune. Four of these variables cover
dataset construction, defining which features the final dataset should include
and whether to remove rows that match custom criteria. Three variables cover
the hyperparameters for the NGBoost framework, and the other one defines the
maximum depth of the base learner used by NGBoost. The description of all
variables selected for fine-tuning, their range and the best value are summarized
in Table 2.

Parameter group Parameter name Values tested Best Parameter meaning
Data processing
parameters Include country ID [True, False] True Whether to encode

G&W country ID

Include month ID [True, False] True Whether to encode
month ID

Drop zero rows [ 0, 20, 50,
80, 99, 100] 20

Percentage of rows with
zero fatalities to be dropped
from the training set

Drop the least
important [True, False] True

Whether to drop the
predefined list of the 35
least important columns

NGBoost
parameters

n_estimators [300, 400, 500] 300 Number of iterations
to train

dist [ Normal,
Poisson] Normal Distribution to assume

minibatch_frac [0.5, 1] 0.5
the percentage subsample
of rows to use in each
boosting iteration

Base Learner
Parameters bl_max_depth [3, 4, 5] 5 The maximum depth of

the tree
Table 2: List of fine-tuned parameters and the best values chosen
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4.7 Competition Benchmarks

The prediction competition develops two heuristic benchmarks that we use to
validate the performance of the developed NGBoost model. As the benchmarks
are based on heuristics, the methodology of their construction is described below.
The benchmarks published by competition organizers cover 4 years from 2018
to 2021.

Last Historical Poisson The first benchmark model uses the last observed
value as the prediction – for every month in each calendar year, the prediction is
based on the observed value in October of the preceding calendar year. Because
of its nature, this benchmark model is almost constant across all months. To
introduce variability in the benchmark model, the ViEWS team drew 1000 sam-
ples for each country month from a Poisson distribution with mean and variance
equal to the last historical value. In the majority of the cases where the last
observed number of fatalities was 0, all draws are identical. Table 3a shows the
evaluation of the benchmark. The upper sub-table shows the evaluation metrics
aggregated by calendar year as well as the mean score across the four years. The
lower sub-table shows that the scores tend to deteriorate over the months of the
forecasting horizon. Naturally, the violence recorded in October in a year is a
better predictor of violence in January than in December the year after.

Bootstraps from actuals The second benchmark model uses actual true fa-
talities. For each country, the model makes 1000 draws from the set of observed
fatalities for all countries of the entire calendar year in which this month is. For
instance, the prediction for any country in July 2021 is a set of random draws
from the observed fatality counts for all country-month instances in 2021. Ta-
ble 3b shows the evaluation of the benchmark. The expected strength of this
benchmark is that it in aggregate covers all actual outcomes. Thus, the igno-
rance scores are low. CRPS is higher than all the other models, whereas the
mean interval scores are moderately high.

5 Results

In this section, the results of the NGBoost model performance are presented and
compared to the competition benchmarks published by ViEWS. Additionally,
Section 5.2 discusses the model performance solely for the 2022 year, as the 2022
year is not covered by benchmarks and does not allow for direct comparison.

The evaluation results for the 2018-2022 years are presented in Table 4 which
composes three subtables. The sub-table 4a shows target metrics aggregated per
year and two means: one mean for 2018-2021 which is comparable to bench-
marks and another one for 2018-2022, which cannot be directly compared to the
benchmarks. Sub-table 4b shows the averaged per-month metrics for 2018-2021
and sub-table 4c shows the averaged per-month metrics for 2022 only.
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By calendar year

crps ign mis
year

2018 20.04 1.19 378.08
2019 9.64 1.04 175.83
2020 13.70 1.08 256.18
2021 37.13 1.23 722.67
Mean 20.13 1.13 383.19

By month in forecasting horizon

crps ign mis
month

1 13.74 1.12 256.14
2 13.09 1.02 242.93
3 11.25 1.15 206.08
4 19.30 1.12 366.75
5 19.15 1.16 363.58
6 23.79 1.09 456.75
7 22.53 1.16 430.75
8 19.05 1.02 361.42
9 17.56 1.25 331.33
10 21.49 1.19 410.53
11 42.02 1.19 820.02
12 18.56 1.17 352.02

(a) Last historical values predictions

By calendar year

crps ign mis
year

2018 23.49 1.11 453.29
2019 22.07 1.09 419.32
2020 21.27 1.09 402.35
2021 36.05 1.13 694.49
Mean 25.72 1.10 492.36

By month in forecasting horizon

crps ign mis
month

1 23.25 1.12 446.28
2 20.10 1.06 383.71
3 21.35 1.13 403.33
4 25.45 1.10 485.86
5 26.83 1.15 502.16
6 31.67 1.08 613.29
7 33.88 1.15 656.47
8 24.83 1.08 473.11
9 19.19 1.17 360.46
10 22.56 1.04 431.10
11 41.30 1.09 811.85
12 18.24 1.10 340.73

(b) Bootstraps from actuals predictions

Table 3: VIEWS benchmark models evaluation for 2018-2021 years, aggregated
by calendar year and by month. The last historical values benchmark tends to
be more accurate which is expressed in the mean for all years, but its accuracy
also deteriorates over time, contrary to the bootstraps from actuals benchmark.

5.1 General Performance (2018-2021)

This subsection evaluates NGBoost model performance against heuristic bench-
marks published by ViEWS which cover 2018-2021 years and that can be directly
compared to our model.

Comparing per-year accuracy we see that the model improves over both
benchmarks for every year, except for only 2019, where the Last Historical Pois-
son yields a very low CRPS of 9.64. The mean CRPS of the model is 18.12 which
improves over the Last Historical Poisson and Actuals Boostraps benchmarks by
12% and 41% respectively.

Turning to per-month prediction accuracy we see that the CRPS for the
model is lower for each month in the test set compared to the correspond-
ing months of both ViEWS benchmarks, except for month 7, where the model
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slightly under-performs (CRPS of 25.60 versus 22.53 for the Last Historical Pois-
son).

Secondary metrics, such as the Ignorance Score and Mean Interval Score,
further illustrate the model’s performance:

– Compared to benchmarks, the Ignorance Score of the model is lower for each
year except for 2019. The mean Ignorance Score is 1.02, which is approxi-
mately 7.27% lower than the ’Bootstraps from actuals’ benchmark mean of
1.10. This indicates a better probabilistic calibration of the model.

– The Mean Interval Score improves over all years of both benchmarks. The
mean MIS for the model is 163.30 while the lowest of the benchmarks is
383.19, indicating more accurate prediction intervals.

These results suggest that the NGBoost model provides more accurate and
reliable forecasting of conflict-related fatalities compared to the competition
benchmarks.

crps ign mis
year

2018 15.73 0.89 181.64
2019 14.71 1.08 152.70
2020 12.82 1.07 155.55
2021 29.21 0.95 461.70
2022 72.34 1.06 1332.44
Meana 14.42 1.02 163.30
Meanb 26.54 1.01 407.89

(a) By calendar year

a Mean for 2018-2021
b Mean for 2018-2022

crps ign mis
month

1 13.08 0.89 120.67
2 10.47 0.91 86.49
3 11.39 1.01 100.47
4 17.61 1.04 231.38
5 16.94 0.98 226.61
6 23.07 0.95 332.04
7 25.60 0.96 373.50
8 17.07 0.99 219.97
9 13.43 1.02 159.81
10 18.44 1.06 245.74
11 36.79 1.12 613.15
12 13.49 1.07 144.95

(b) By month in forecasting
horizon 2018-2021

crps ign mis
month

1 12.94 0.98 137.72
2 11.50 0.96 121.59
3 68.99 1.04 1275.12
4 51.80 0.98 923.75
5 31.08 1.03 515.10
6 16.22 1.13 210.85
7 12.01 1.09 131.29
8 12.24 1.09 131.51
9 158.98 1.11 3045.86
10 22.88 1.10 330.48
11 436.38 1.17 8600.00
12 33.05 1.05 565.99

(c) By month in forecasting
horizon 2022

Table 4: NGBoost model evaluation for 2018-2022 years, aggregated by calendar
year and by month

5.2 Additional evaluation for the 2022 year

The ViEWS team has supplied data until October 2021, which also allows for
predicting the whole year of 2022. While the results cannot be directly compared
to the benchmarks as their coverage is only until 2021, the evaluation results
highlight potential biases present in the model.
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As can be seen in Table 4c, the prediction accuracy for the 2022 year is
substantially worse than the aggregated accuracy for the 2018-2021 years. The
per-year aggregations in Table 4a show that the mean CRPS for the 2018-2022
period is 26.54, which is twice as bad as the 14.42 CRPS for the 2018-2021
period.

Table 4c shows per-month metrics for 2022 and in comparison with Table 4b
it is clear that the CRPS for months 3, 4, 9, and 11 is much higher than averages
for previous years. The per-month distribution of predictions vs actual values is
shown in Appendix section A.2.

November of 2022 stands out with a strikingly high CRPS of 436.38. Such low
accuracy comes from a missed spike in fatalities in Ethiopia. In November UCDP
recorded a record number of 80 thousand fatalities in Ethiopia. The instability
in Tigray province has spiked a violent civil war that resulted in numerous
fatalities. The model fails to predict this spike, which results in a CRPS of
8,397.3 for Ethiopia on a country level for 2022 and in CRPS of 79,519.44 for a
single prediction in Ethiopia in November.

The predictions for Ethiopia and some other countries are available for visual
inspection in Appendix section A.3. Interestingly, some countries seem to expe-
rience violence seasonally. For example, Algeria experienced a spike of higher
magnitude at the beginning of 2021 and a lower magnitude spike at the begin-
ning of 2022, which was correctly predicted by the model. At the same time, we
see that for the Central African Republic, the model underestimates fatalities
at the beginning of 2022 and predicts a slight spike which is still lower than the
actual values. This behaviour brings to the attention the fact that in some cases
the model heavily relies on the previous violence to model the prediction. This
observation and the feature’s importance are discussed in the next two sections.

5.3 Model accuracy dependency on input fatalities distribution of
the month

Contrary to the Last Historical Poisson benchmark, the accuracy of the NGBoost
model does not seem to decrease over time as more distant forecasts are made.
The prediction accuracy for the first month is 13.08, for the ninth - 13.43 and
the twelfth - 13.49 (shown in Table 4b) are roughly comparable. While this
might mean that the model can generalise well, it also raises concern that some
months are easier, and that’s why the accuracy drastically decreases for the other
months.

Figure 4 shows the distribution of the dependent variable for the 2018-2021
with the per month average CRPS for these prediction windows. It can be seen
that for months that have a distribution of fatalities close to 0 and only a couple
of observations with high fatalities, the CRPS is substantially lower. This proves
that some months are indeed ’easier’ regarding the absence of violence spikes
and that the model has constantly higher accuracy for such ’easy’ months.

To give another perspective on the model predictions, Figure 5 shows the
per-month distribution of the predicted vs actual values for the 2021 year and
the standard deviation of each prediction. It can be seen that the model tends to
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underestimate fatalities. For Nov 2021 there is a single prediction for which the
model predicts around 200 fatalities with high certainty, while the actual value
spikes to more than 10,000.

Fig. 4: Distributions of dependent variable per month for 2018-2021 and mean
CRPS per month (lines with scale on the right) for the NGBoost model and the
Last Historical Poisson benchmark. The CRPS score increases for the months
that have a distribution of fatalities further from 0.

5.4 Feature Importance

Figure 6 shows the ten most important features and their influence on the NG-
Boost model output using Shapley values [51]. Previous studies indicated, that
the models optimised to satisfy general criteria of the smallest prediction error
of fatalities tend to rely on historical violence to make forecasts [41, 42]. As for
most countries, the amount of fatalities does not fluctuate fast and spikes as
rather rare - the implemented NGBoost model also finds a correlation that the
previous violence is a good predictor of future violence.

Except for the previous fatalities, the important features are the percentage of
the female labour force, the refugee population in a country, freedom of domestic
movement, and whether the government respects civil liberties across different
areas of the country.

Interestingly, the month ID does not make it to the top ten as well as the
other political and economic features found statistically significant in the other
conflict studies [52] (Table 2 and Table 3).
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Fig. 5: Distributions of predicted values by NGBoost model vs actual values per
month for 2021 prediction window along with the mean CRPS per month

Fig. 6: SHAP tree explainer for top 10 most important features. Historical vio-
lence features mostly shape the model output, with some adjustment for struc-
tural variables.
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5.5 Analysis of country forecasts

One of the most beneficial features of the NGBoost model is that it produces a
separate forecast per month for the whole forecasting window, which allows for
per-country analysis and comparisons to benchmarks. In this section, we look
into the feature importance of predictions for Ethiopia, Algeria, and Turkey
utilising the benefits of the NGBoost framework explainability.

Figure 7 shows three country-month predictions for 2022 with the SHAP
force plots for each. The force plot for the November spike in Ethiopia is shown
in Figure 7a, which highlights that the model had no clue about the upcoming
surge of violence. The model predicts 90 fatalities based on historical fluctuations
with the actual value for this month being 79,609. We see that percentage of
female labour feature, which was found important in Section 5.4, is relatively
high (46.5%) and decrease the estimated number of fatalities.

On the other hand, in Figure 7b we see that the model overestimated fatalities
for Algeria in March 2022. The forces that push the estimate above the actual
value are three protests that happened that month according to the ACLED
database and a low percentage of female labour.

Figure 7c shows a prediction for Turkey in January 2022, where again the
model overestimates actual fatalities. Interestingly, the model adds a country bias
for all predictions in 2022, which pushes all estimates by about 7 fatalities. All the
other features that mainly shape this forecast are previous violence features with
a small positive influence from the moderate value of the freedom of domestic
movement index.

Overall, the force plot analysis indicates that the model relies on historical
violence and country bias to build its predictions with political and economic
features only slightly adjusting the forecasts. The implications of the findings
above are discussed further in Section 6 along with possible improvements in
Section 7.

6 Discussion

The model presented in this paper is the first attempt to build an explainable
probabilistic regression model to forecast state-based fatalities on a country-
month level with global coverage. While the model improves over the heuristic
benchmarks published by the competition organizers, it possesses several limita-
tions that do not allow it to generalise well. The model heavily relies on historical
fatalities to make future forecasts, and only moderately considers other economic
and political features that theoretically are drivers for the conflict.

On the other hand, the economic and political features are mostly static
and do not change swiftly even when the conflict bursts. One can argue that
economic and political features may explain the risk (likelihood) of the conflict,
but cannot indicate an outburst of a conflict, as they do not capture sudden
changes in people’s mood and views or situational context. An outburst of a
Ukrainian war in February 2022 serves as a good example in this case. The
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(a) Prediction for Ethiopia on Nov 2022, with actual of 79,609

(b) Prediction for Algeria on March 2022, with actual of 3

(c) Prediction for Turkey on Jan 2022, with actual of 3

Fig. 7: SHAP force plot for three cases showcasing how the features are weighted
for separate predictions.

economic and political features present in the dataset do not indicate the Russian
troops gathering on a Ukrainian border three months before the invasion, which
makes it questionable whether such conflict can be predicted with the present
dataset.

Analysing results closely, we see the model does not capture the concept of
war and the fact that if two countries are at war then they both are more likely
to incur high fatalities. There are two reasons for the lack of this understanding:
the absence of geopolitical features in the dataset that may explain relationships
between countries and that the spatiotemporal features present in the dataset
simply indicate that there was some violence in the neighbouring countries but do
not explain the relationship of the analysed country to the neighbours’ fatalities.

Another limitation of the current model is that it tests only two distributions.
While the normal distribution was found to be the most accurate, arguably,
the country’s risks of violence are not always distributed normally. For conflict
research, the tails of the probability distribution are of the most interest as
they might warn on a small probability of the worst-case scenario and a high
probability of the most likely forecast.

Moreover, the CRPS as a target metric used to optimise the model, is not
ideal as it tries to satisfy a general case (which for most countries means pro-
longed peaceful periods with rare outbursts). While generic scoring might be
suitable for cases where the spikes happen frequently, predicting rare spikes re-
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quires metrics that allow for learning these patterns and do not severely punish
temporal errors as CRPS does. The possible target metrics might be multiplex
pseudo-Earth Mover Divergence Score [53], which estimates the cost of moving
excess prediction mass across space and time. This metric works with binned
forecasts, which is not exactly suitable for predicting the exact number of fatal-
ities, but the idea is that it still favours the predicted spike slightly shifted in
time. Additionally, reporting the model evaluation scores only for the periods
with changes in fatalities as was done by Muller & Rauh [54] might be more in-
formative. Arguably, conflict forecasting models are valuable when they forecast
escalation and de-escalation correctly and do not simply extrapolate history.

7 Future Work

A promising step forward is the addition of high-frequency data such as news
and political speech. Utilising a recently published dataset for topic analysis of
news by Muller et al. [55] will add a much-needed high-frequency component to
the feature set. Future work should also focus on working with the dependent
variable, as due to the high skewness to the right, the model struggles to output
predictions with more than 500 fatalities. A possible solution that should be
tested is to perform a log transformation of the dependent variable, which will
better fit a normal distribution.

Another promising improvement is to employ a weighted ensemble of models.
This approach worked greatly for the ViEWS team for their weighted ensem-
ble optimised for point prediction. The ViEWS lab shows that implementing
multi-horizon forecasting reduces the error rate for the first month by 2-3 times
compared to the 36th month[10].

Further, experimenting with deep learning techniques such as Long Short-
Term Memory (LSTM) networks and Transformer architectures can be benefi-
cial. While Ettensperger shows that the best LSTM network could only reach
and not surpass the performance of Random Forest trained on the same data [42],
the dataset used in that study comprised only 851 country-years, which is ar-
guably too small for deep learning. With a country-month dataset of 70 thou-
sand observations, deep learning may already be feasible. LSTM networks can
capture long-term dependencies in sequential data suitable for the conflict mod-
elling task. Transformer architecture, leveraging the self-attention mechanism,
can capture complex patterns and dependencies, and may be able to improve
the prediction accuracy of rare spikes in violence.

Moreover, experimenting with other representations that support modelling
relations between countries may allow a model to better capture geopolitical
dynamics. Future work may focus on developing a framework for representing
countries as nodes in a Spatio-Temporal Attention Graph Neural Network [56,
57] and their relations as edges. But as the number of countries changes over
time and node edges might also change this approach brings challenges that need
to be solved before it can be implemented.
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Additionally, implementing a data pipeline for updates of the model’s data
will allow for real-time monthly forecasts. While this step only makes sense
when the accuracy is in place, it will be important in the future to deliver a
fully-fledged conflict prediction model.

8 Replication data

The replication scripts are freely available on the GitHub page of the project.
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A Appendix

A.1 Correlation Matrix

Fig. 8: Correlation matrix for original ViEWS competition dataset
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A.2 Predicted vs Actual values for 2022

Fig. 9: Distributions of predicted values by NGBoost model vs actual values per
month for 2022 prediction window along with the mean CRPS per month

A.3 Predictions for some countries in 2022 prediction window
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Fig. 10: Predictions for 2022. The highlight is Ethiopia, for which the model
misses the spike in violence. For the other countries, the predictions are moder-
ately accurate.
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