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Abstract

Indigenous rare languages are often spoken by people in low-resource environ-
ments, where the literacy rate is low in many cases as well. Most communication
tends to happen using speech, instead of in writing. These factors reinforce each
other, as spoken rare languages are more difficult to interpret in an automated
way due to a lack of available data. This makes increasing productivity more
difficult and prevents fast development. At the same time, development is im-
portant for building businesses and improving general living standard, which
is correlated with an improvement in literacy. A lack of automated processing
of communication with speech therefore prevents improvements in literacy rate
and living conditions.

This thesis introduces a novel method of handling spoken rare languages, by
introducing a method to automate matching of their spoken words, and therefore
attempts to help solve a key problem in low-resource environments. The method
matches spoken words with each other by (1) using a pre-trained trained model
for a phonetically close popular language to create a phonetic transcription of a
recording, (2) generalizing context-specific or unique language specific aspects
out to create a broader phonetic description of the spoken segments, and (3)
calculating similarities between phonetic descriptions to allow for matching.

The proposed method is tested on the Dagbani language, and shows promis-
ing results. The method opens up a path towards speech-based applications in
rare languages without having to perform any expensive training or finetuning
of a model. The presented solution is an energy-efficient one and very well suited
for use in low-resource environments.
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Chapter 1

Introduction

1.1 Rare languages
A language can be defined in different ways, one way to define it is as a descrip-
tion of the general abstract concept used to convey information, and another
way is as a description of a specific specific language [103] and accent. Spo-
ken languages may have existed since around 60 to 100 thousand years ago [9].
Around 1900 BC the first analyses were created that looked into the relations
between and differences of languages, in that specific case between Sumerian
and Akkadian. It was found that eventually all cultures that developed writing
started performing these kind of analyses between languages [32].

Chomsky found in 1965 [34] that there is a generative theory of languages
which allows them to be explained using a universal grammar. This would
mean that the purpose of researching any individual language is only to find
information about the rules that underlay the grammar of all languages. This
set of underlying rules would be the same for every human and every language.
A more recent theory [21] builds on top of this and proposes that the reason
why humans are able to create this grammar to form languages with is a recent
mutation in the human genome.

However, another theory around languages is that of cognitive linguistics,
which does not view languages as abstract forms of their proposed universal
grammar, but rather sees languages as abstract forms of expression that are
based on underlying concepts users think with [38]. These concepts can be
universal among humans, but can also differ depending on the path of cultural
evolution groups of humans have taken over generations. This theory thus
analysis languages more from a cultural perspective [43], [78], [150], [190].

The theories of languages of cognitive and cultural linguistics show the im-
portance of being able to analyze languages and with that attempt to understand
their underlying concepts [122]. As cultures change, languages change, and as
cultures disappear, so do their languages. A language becomes a dead language
first, when there are no more native speakers - there may still be non-native
speakers of the language. After this the language can become extinct if there are
also no non-native speakers anymore [39]. Since 50% of the world speaks the 20
most spoken language [13], often as their only spoken language, the number of
dead languages quickly increases, and may soon reach percentages above 50% of
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the total number of currently spoken languages. Many languages are currently
endangered [111], and many more will follow partially due to this increasing
globalization [116], [171].

An important aspect for the analysis - perhaps the critical aspect - of rare
languages is that there is not a lot of high quality audio material available [108].
There are efforts underway to make recordings of somewhat popular languages
publicly available [11] through for example the Common Voice project [112],
but also of rare languages [31], for example through the Endangered Languages
Project [18]. Next to this, publications and other information on known lan-
guages, especially rare languages, is being recorded in the open source project
Glottolog [59].

This thesis partially attempts to contribute to the awareness of language
endangerment, by looking into ways of analyzing languages of which not a lot
of clear spoken audio in combination with text is available.

1.1.1 Impact on communities
The rare language can also be seen as low-resource languages, often spoken in
low-resource environments. The communities in these environments in many
cases show a low literacy rate [25], [143], with an example of less than 35% in
rural Mali.

In the urban areas and western countries, many technological solutions are
available that increase productivity and contribute to economic growth. How-
ever, in low-resource areas, there is often a lack of infrastructure and knowledge
that prevents the proper adoption of technological solutions [174]. The low liter-
acy rate in these areas, together with the use of rare languages, also contributes
to a low technological literacy rate [88]. These reasons together prevents devel-
opment of communities or slows this down, which causes the issues to remain,
for which solutions need to be found [4].

For these reasons, it is important to create methods that are energy-efficient
to use, and are well suited to low-resource environments, to help development
and build a better future for these low-resource communities. The method
explained and experimented with in this thesis helps with this.

1.2 Speech recognition
The main goal behind this thesis is matching of speech through speech recogni-
tion. Traditionally speech recognition is the translation of speech into text that
is interpretable by humans or computers. Research in this field goes back to the
1930s [80] with a proposal by Dudley, Riesz, and Watkins [44] for a system to
perform speech analysis. From this moment on implementations were created,
such as digital recognition limited to single word definition, which were based
on ‘classical’ methods, for example hidden Markov models [27].

Later on ‘modern’ approaches were developed in the form of neural networks
[187]. However, the performance of these methods was often less good than the
performance from hidden Markov models, which caused methods with neural
network to be used in combination with hidden Markov models, and usually as a
preparational step towards the latter [68]. This is because early neural network
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were good at performing recognition at a short time scale, but not good at a
continuous-time scale, where hidden Markov models did perform well.

After the introduction of neural networks in speech processing, further im-
provements were found through the introduction of techniques like the LSTM
[66], deep recurrent neural networks [58], and transformers [100]. These methods
still used hidden Markov models to produce final correct text from recognized
speech. End-to-end speech recognition attempted to take out the step of the
hidden Markov model and use neural networks to nearly directly produce a
readable interpretation of speech. An example is the Connectionist Temporal
Classification [57], which directly transcribes speech into characters. However,
cleanup was still necessary afterwards to handle mistakes. Using very large sets
of data, further iterations with increasingly better performance were introduced
[8], [94]. Due to the very large size of the models and the data sets required for
training, transfer learning was used more and more to adapt existing models to
new domains [163].

Nowadays, several models are available to the public to transcribe speech.
Examples of these are Whisper [130], which is very user friendly and usable
through the command line or Python, or alternatives like Distil-Whisper [53] or
WhisperX [17]. Further examples include Wav2Letter++ [127], Mozilla Deep-
Speech [11], or NeMo ASR [86]. Solution are constantly created and improved,
which causes the presented list to be likely out of date at the time of reading
this.

1.3 This thesis
This thesis focuses on languages from which not a lot of recordings are available.
This makes it difficult to train a modern neural network for the entire language
and get meaningful results. The thesis proposes a method that combines both
modern solutions with pre-trained artificial neural networks trained for popular
languages and more ‘classical’ processing of textual representations of speech to
get meaningful output in an energy-efficient way for matching of spoken words
in a rare languages.

In more details, the method from this thesis focuses on matching single
spoken words. The transcriptions of the spoken words are not necessarily in-
terpretable by humans, but contain enough information to be interpretable by
machines. The machine will be able to match two transcriptions of a spoken
word together, and in that way literally match instances of recorded speech with
each other, the result of which can then be presented in a human-interpretable
form. This makes it possible to search a catalog of words with spoken defini-
tions and find a correct match with a given speech recording. There are many
applications to this that will later be discussed.

The concept of matching spoken words can be explained in several steps.
Each of these steps can be described in an abstract way, after which different
implementations of each step are possible. The steps are further explained and
investigated in chapter 2.

Each step of chapter 2 is implemented in a way as described in chapters 3 and
4 and experimented with in chapter 5. Based on these experiments a conclusion
is drawn in chapter 6, which is discussed in chapter 7. In this discussion, ideas
for further research are presented in section 7.1, together with several ideas for
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applications. The implementation itself is available, and instructions on how
to get and work with the implementation can be found in appendix B and
attachment A.

The software resulting from this thesis has been packaged and released under
the name “speechmatching” [148] version 1.0.05, which can be used with Python.

Archiving references
A major problem on the Internet is “link rot”, the decrease over time in fraction
of links that are still accessible. Estimates at the time of the ‘early’ Internet,
around the start of the 21st century, found that 40% to 50% of references are
inaccessible after 4 years in a certain set of publications [154]. The ‘half-life’ of a
link in articles in three journals published between 1997 and 2003 was found to
be roughly 5 years [55]. More recently in 2015, 37% of URLs in theses defended
between 2003 and 2010 were found to be not available [30]. This problem also
exists in fields of law with 20% to 30% of links not being available in certain law
journals and even documents published by the Supreme Court of the United
States of America [192].

The way to prevent this is by using web archives to store digital data, and
especially focusing on links that are at a higher risk of becoming unavailable
[191]. Storing web pages is also know as web archiving, and several solutions
exist that create, distribute and preserve these web archives [12]. There are
some calls for the adoption of DOIs for digital resources to decrease the chances
of link rot [23], [37]. This thesis uses the Wayback Machine6 by the Internet
Archive7 to save web pages using the Save Page Now8 tool. This is done for
the web sources without DOI or ISBN identifier, both the archived version and
date of archival are printed. Three resources in this thesis could only be found
in online web archives, and have been quoted from there.

For those writing documents in LATEX, BibLATEX can make the process of
mentioning an archived version easy by using a proposed solution9 for imple-
menting the archiveurl{...} and archivedate{...} fields for a BIBTEX file.

By adopting this approach and explaining the ideas and reasons in this
subsection, the author of this paper hopes to incentivize others to do the same
in their reports and publications. Link rot is a problem that will never fully
go away, but it can be greatly reduced, for which authors in the future will be
thankful.

5A. Schuringa, Speechmatching, version 1.0.0, Jan. 2025. [Online]. Available: https://pypi.
org/project/speechmatching/1.0.0/ (visited on Feb. 22, 2025).

6The Wayback Machine. [Online]. Available: https://web.archive.org/ (visited on Aug. 2,
2024), archived at https://web.archive.org/web/20240822085843/https://web.archive.
org/ on Aug. 22, 2024.

7The Internet Archive. [Online]. Available: https://archive.org/ (visited on Aug. 2,
2024), archived at https://web.archive.org/web/20240821003119/https://archive.org/ on
Aug. 21, 2024.

8Save Page Now. [Online]. Available: https://web.archive.org/save/ (visited on Aug. 2,
2024), archived at https://web.archive.org/web/20240925134018/https://web.archive.
org/save/ on Sep. 25, 2024.

9moewe, Biblatex: Add a second url where content is archived, Jan. 2018. [Online]. Available:
https://tex.stackexchange.com/questions/302968/biblatex-add-a-second-url-where-
content-is-archived/303178 (visited on Aug. 2, 2024), archived at https://web.archive.
org/web/20250110094903/https://tex.stackexchange.com/questions/302968/biblatex-
add-a-second-url-where-content-is-archived/303178 on Jan. 10, 2025.
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Chapter 2

Matching speech

Rare languages often do not have large amounts of recorded audio in combi-
nation with text available. This makes it difficult to train an artificial neural
network to create a full model of the rare language and be able to fully inter-
pret the language. This means that one needs to fall back to other methods of
extracting information from recordings of the language, or reducing the expec-
tations of this model.

2.1 Reducing details
One of the most spoken languages in the world is English. It is not very difficult
to get a large data set of spoken English in combination with text to train a
model on [35], [62], [128]. Because so much data is available, all details of the
English language can be trained for, and very high scores can be achieved by
artificial neural networks in tests for creating transcriptions [130] or even more
in-depth understanding of the English language [170]. When less information is
available, a choice between two options needs to be made. Either the scope or
‘number’ of supported details can be reduced, or the expectations of accuracy
can be reduced

The reduced accuracy means that for example instead of a 95% accuracy
over correctly recognizing certain sounds or words, an accuracy of for example
60% or less should be expected. Low accuracies are often unacceptable.

Reducing the scope of supported details can happen at the ‘front’ or the
‘back’ of the network. At the front of the network, the number of sounds or words
that the network needs to recognize can be reduced. Instead of requiring the
network to recognize the full language, the requirement could be to just recognize
the local versions of the words ‘yes’ and ‘no’. This means only recordings of ‘yes’
and ‘no’ are required, which reduces the overall numbers of samples greatly
compared to a case in which tens of thousands of words need to be supported.

On the other hand, at the ‘back’ of a network one can reduce the scope of
what should be supported by for example altering the form of the output. An
example is that regular modern automatic speech recognition performs speech
to text. This is done by directly mapping output of a neural network to prob-
abilities for words, parts of words, or even parts of sentences, and in this way
transcribe speech into a form readable for humans. This can require a lot of
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tokens, representing both the textual as well as the contextual aspects of speech.
Reducing the amount of output may mean that certain details are not given as
output by the network anymore. This in turn may mean that details required
for easy interpretation of the output by humans are lacking, which makes it less
likely that the output can be directly understood by humans. However, that
does not mean that the output is meaningless. Output can still be interpretable
for machines, instead of humans. If a machine is able to transliterate speech
into a form of output that is static under the transliterations of the same word
in different recordings of the same word, the machine is still able to work with
the output.

Overall the complexity of the requirements for both the input, at the ‘front’
of the network, and that for the output, at the ‘back’ of the network, can be
reduced at the same time. In this thesis

• the number of word supported at the same time is reduced,
• the information in the intermediate output is reduced and not well inter-

pretable by humans, and
• finally the output is mapped to the predefined representations of supported

words after which it is presented to humans.

2.2 Processing speech
The implementation in this thesis is initialized with a set of supported words.
Examples are given of what these words sound like, which are translated by the
implementation into some machine-interpretable transcription. Another speech
recording is then given, which is also interpreted, and the machine matches the
transcriptions of both pieces of speech with each other. These are compared
between the various supported words and a decision is made on which word was
most likely pronounced in the second recording.

2.3 Implementation steps
In the case of working with recorded speech there is a set of steps which are
performed to process the data. Those steps are outlined here. To note again -
these steps are designed to be used on a language from which not much data
is available, which means limitations need to be introduced on the process as
previously discussed. The idea is to use an existing model that is not specially
made for the rare language, and alter the output of the model so that details
very specific to the language the model was made for are generalized away.
What is then left is a translation of speech to some generalized form that can
be interpreted by a machine. The next subsections will go through the 3 steps.

2.3.1 Transcribe
The first step is extracting information from a recording of speech, for example
of a word. Previously it was noted that at the ‘front’ of the model or algorithm,
the number of supported words is reduced. This can be interpreted in two ways.
The first is that the supported words are predefined and static and small in
numbers, which reduces the required recordings to only those of the predefined
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words. The other way to interpret this is that the number of supported words
is small, but not static. This means that any set of words can be chosen out of
a large corpus, as long as the total set of chosen words is small.

In the first case of a static predefined set of words, a model can be trained
on only these words [15], [159]. During training, the model is simply given input
and output, and the artificial neural network will adjust itself to map the input
as good as possible to the right output. This means that the calculations the
model makes after training have been adjusted to work specifically with the
given set of words. Any recording of a word not in this predefined set can be
processed as well, but the result from the network will have no good relation to
the recording, since the network was not explicitly trained on this word.

Training a network adjusts the (often) millions of calculations done to get to
a certain output, to make this output as close to the correct result as possible.
This means that the parameters of the calculations are not explicitly defined by
a human, but implicitly defined through training in which a human only controls
the input and output and general parameters to adjust the network with. It
can be said that on a more abstract level, the artificial neural network implicitly
creates criteria over the input for a certain output to be given. For a human it
is therefore not always clear what these criteria are, or how the network exactly
decides on an outcome. This is also described as the effect of a ‘black box’ with
artificial neural networks [29], [153].

In the second case of a limited set of words that are not predefined, a neural
network cannot be trained easily. If the set of words is not static, it may be
different for each use case, and each use case would require a new model to
be trained, if the method from the first case is adopted. For each model there
need to be significant numbers of samples from each of the words that should
be supported. This quickly becomes too expensive, forcing limits on the ‘pool’
of words from which combinations are chosen.

A solution would be to use classical methods that do not use neural networks,
or use an existing neural network that closely aligns with a common aspect of
the data that is being worked with. In the case of this thesis, an already trained
network is used. This network is trained with data of a language with similar
phonetic properties as the rare language, though there are differences.

2.3.2 Generalize
To handle the differences between the data the network was trained on and the
data on which it is used in this thesis, the details in the output of the network
that are very characteristic of the data it was trained for need to be removed.

As noted in section 1.1, languages usually have similar features. These sim-
ilar features can be in the form of high level abstract concepts that are seen in
general structures of languages, but also in less abstract concepts like the sounds
themselves. Phonetic sounds are often shared or very similar across languages
[85]. This means that in the case of two languages and their phonemes, a set can
be found that contains the phonemes that are shared between both languages.
This allows for a model trained on phonemes in one language to be used for
another language, which shares phonemes with the first language. In practice,
phonetic sounds are not exactly the same between languages but can have a
strong overlap. This means that one language may have some similar phonemes
that are perceived to have different meanings in that language, while they are
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perceived to have the same meaning for speakers of another languages. These
kinds of similar sounding but different phonemes would need to be generalized
over - mapping them to a single representation, so the similar phonemes are
correctly interpreted as having the same meaning in the other language. This
process shows how a ‘baseline’ in the form of phonetic sounds can be found that
allows a phonetic model of one language to be used as the phonetic model of
another language.

Abstract explanation of mapping phonetic sounds between languages
So

un
ds

So
un

ds

A sound

Local meaning

Two sounds,
same meaning...

... correctly mapped
to the same meaning.

... incorrectly mapped
to the different
meanings.

Phonetic mapping

Rare language Popular language

Figure 2.1: An abstract drawing showing the acoustic sound ‘lines’ of a rare
language on the left and a popular language to the right. The cubes are sounds
on the abstract ‘acoustic spectrum’. The solid lines next to the cubes are the
local meanings. Two meanings are shown as each having two different sounds
on the left line, possibly due to dialects or accents. One set of two sounds
is correctly mapped on the right to a single meaning, while the other one is
incorrectly mapped to two meanings.

Figure 2.1 shows an example of sounds and their meanings in different lan-
guages. The figure contains two examples of a ‘meaning’ in a rare language
on the left being defined in two different sounds each. Differences in sounds of
words or characters can happen when different accents are spoken, but those
different pronunciations may still have the same meaning as is the case in this
figure on the left line. Groups of people can develop accents on the main spoken
language, which can create small but audible differences in the pronunciation
of words [42]. These sounds should ideally be mapped in the other language to
the same acoustic meaning. In figure 2.1, this goes well in the upper case, while
the middle case shows the two sounds of the same meaning in the rare language
being mapped to two different meanings in the popular language.

As details are generalized away, some information is lost. As a consequence,
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similar sounding but different words may be transcribed as the same word,
which has the potential to decrease accuracy. Next to that, it will also be more
difficult for humans to interpret the transcribed generalized details, as details
that would make it interpretable in the original language of the model are taken
out, while details that are left may not map easily to the letters or characters a
word in the other language would be written with.

2.3.3 Match
After generalizing the strings into a set of characters that cover sounds that
are close to each other, they can be matched with each other. The idea is that
strings of recordings from which the spoken word is known are matched to the
string of a recording from the which the spoken word is unknown. Then, by
matching the strings with each other, the recording with unknown word can be
matched to a known word. In that way the word that is spoken can be identified
and further used.

Recordings of phonemes and words can have differences, even if they are
spoken by the same person, meaning that the acoustics spoken by the person
are the same between recordings. One difference can be the speed at which a
word is spoken, and another may be the noise in the recording.

In the case of a different speed of pronouncing a word, the phonemes will be
more stretched out in time, which means the characters that represent them are
further away in time, or duplicated over several time steps. This needs to be
handled when matching the strings representing the recordings with each other.
In the other case of noise in the recording, this needs to be handled as well.
The noise can introduce characters in the representation of the recording that
do not belong to the word spoken in the recording. This requires the algorithms
for matching strings to not statically check characters one after the other if
they are matching, but require a more dynamic approach to handle any ‘extra’
unexpected characters in the strings.

Further, a combination between the two effects can be problematic. The
impact of noise on longer pronunciations of words may cause additional charac-
ters to be introduced. As a first example, the sound for A is pronounced fast.
If noise happens at a certain rate, then there is a chance that the noise happen
right before the A or right after it. Representing the noise with X, this may
then result in the representations AX or XA, in which case a single character is
introduced by the noise. Now, take the case of a long pronounced A. If the noise
still happens at the same rate as before, there is now an increased chance for the
noise to appear in the middle of pronouncing the A, which may now also cause
the representation AXA to be created. In this case, two characters are introduced
due to the noise instead of one.

Various algorithms exist to handle matching of strings, which are introduced
in the next section.
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Chapter 3

Theory

The theory behind the three steps outlined in section 2.3 is described in this
section. Because these steps can be implemented in different ways, the gen-
eral explanation was separated out into the previous section, while the current
section focuses on the theory behind the implementation choices in this thesis.
While the implementation in this thesis gives reasonable results, different im-
plementations of each of the steps may improve results, as will later be outlined
in section 7.

3.1 Transcribe: English phonemes
As previously shortly explained, phonemes are often shared across languages.
For that reason it is possible to use a model trained on a popular language
for a language that is not popular. This is, as long as both languages have
a reasonable amount of overlap in their phonemes. In the case of this thesis,
the English language is used. Using Wav2Letter++ [127] recorded speech is
transformed into letters corresponding to phonemes in the English language,
also known as an English phonetic transcription. Wav2Letter++ is a further
iteration on the original Wav2Letter [36].

The design of an artificial neural network is not the main objective of this
thesis. An existing pre-trained neural network is used, and more ‘classical’
methods are used on its output. For this reason, no in-depth description and
discussion will be written on either artificial neural networks in general or the
specifics of the neural network used in this thesis. The very basics behind
neural network will be introduced and each of the techniques used in the pre-
trained model will be explained in short form. This is done so that a very basic
understanding of neural networks is created, and the reader has some idea of
how the pre-trained network works.

3.1.1 Artificial neural networks
Artificial neural networks perform calculations over connected nodes inspired
by how the human brains work [137]. In the brain, neurons fire signals to
each other, and in that way move data from input to output. Neurons can
trigger different intensities of signals, and with billions of neurons a complex
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system arises. The artificial neural network works with roughly the same idea
[14], although it does not fully approach it [145], the human brain is still being
researched and discoveries are being made constantly [149], [186].

Basic structure
The basic structure of a neural network will now be explained, by building up
a fully connected network from its building blocks.

A node in an artificial neural network represents a neuron, and performs a
calculation

𝑓 ( ⃗𝑥) = ⃗𝑥 ⋅ �⃗� + 𝑏, (3.1)
where ⃗𝑥 is the input in the form of a vector of values, �⃗� is the vector of the same
size that multiplies its values with the values in ⃗𝑥 and adds them up, after which
a bias 𝑏 is added. This result then goes through an activation layer [151] which
is modeled after the chance of a neuron to fire a signal depending on the input.
If the input reaches a certain threshold, the neuron fires and else it does not.
In the brain the neuron always fires at the same intensity, where the amount of
energy that is passed on over a certain amount of time depends on how often a
neuron is fired. For a greater intensity the neuron is fired more often than for a
lower intensity.

As an example of an activation layer, a typical one is

𝑓 (𝑥) = {0 if 𝑥 < 0,
𝑥 else, (3.2)

which is the ReLU activation layer [3], or Rectified Linear Unit, which forwards
input 𝑥 if it is positive, meaning it ‘fires’, and else ignores the input. The
threshold in this case is thus set at 0 to determine on firing or not. The output
is equal to the input when positive, which is not biologically correct as the
biological neuron only support forwarding a certain amount of ‘energy’ for each
pulse.

Another example is the Sigmoid activation function [165] which calculates a
value between 0 and 1 from any input value 𝑥 with

𝜎 (𝑥) = 1
1 + exp (−𝑥) . (3.3)

This is different from the ReLU activation function in that it does not simply
pass on the input value, but has a limit to how much ‘energy’ can be passed on.
It requires a much higher input value to output a slightly higher value. Next
to the ReLU and Sigmoid activation layers, many other activation layers exist.
Which one to use depends on both the type of input and output data.

Taking the information on a linear layer and an activation function together,
they can be chained and a network can be created with many layers, each of
which passes on information to the next. An example of such a network is shown
in figure 3.1. Which shows nodes as circles and connections between them as
lines between the circles. Each node takes a number of connection, which is the
vector ⃗𝑥 in formula 3.1 and outputs a vector that travels on to connected nodes
for further calculations. The connections themselves pass through activation
layers, in this case the ReLU activation function, with which the values on the

14



A fully connected artificial neural network
hidden layersinput layer output layer

ReLU ReLU ReLU ReLU
Figure 3.1: A simple example of an artificial neural network with fully connected
layers, the ReLU activation function, and input and output nodes on the left
and right sides respectively.

connections are changed. On the left of the network are the input nodes in red,
and on the right the output nodes in blue.

In reality a network nearly never looks as plain as the network in figure 3.1.
They can be very complex, with layers that branch off and join the network at a
later stage [136], transformers [176], convolutional layers [89] that work on sets
of neighboring nodes, or many more. This is an active fields of development.
The important techniques for the model used in this thesis will be explained
later.

Training
In order for an artificial neural network to be useful, it needs to have weights
�⃗� and biases 𝑏 from formula 3.1 with values that make the network perform
calculations in such a way that it produces output that is meaningful in the
context of the problem that is given to the network in the form of input data.
This is done using training.

Training a neural network involves feeding data into the network, retrieving
the output data, determining how far off the output data is from what is ex-
pected, and then adjusting the values in the network to give an outcome that is
closer to the expected output. This means that during training both the input
and output data need to be known, and only after training can input data be
used for which the output is unknown. An untrained network starts out with
predefined or random values.

The difference between output of the network and the expected output is
used in the calculation of a loss ℒ𝜙 (𝑥) [56], with 𝜙 the parameters of the network
and 𝑥 the data over which the loss is calculated. The negative slope of this loss
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shows the direction in which parameters of the network need to be adjusted to
create a smaller loss on a next iteration. For each parameter a direction

𝛿𝜙𝑖 = −𝜕ℒ𝜙 (𝑥)
𝜕𝜙𝑖

, (3.4)

is calculated, with 𝜙𝑖 a parameter of the network. For 𝜙𝑖,
𝜕ℒ𝜙(𝑥)
𝜕𝜙𝑖

can be calcu-
lated using backpropagation [138], [182]. All calculations since 𝜙𝑖 leading up to
the output are known. Taking the derivative of these calculations can be done
using the chain rule [10], [91]

(𝑓 ∘ 𝑔)′ = (𝑓 ′ ∘ 𝑔) ⋅ 𝑔′, (3.5)

where 𝑓 (𝑥) and 𝑔 (𝑥) are for example those defined previously in formulas 3.1,
3.2, and/or 3.3. If the used formulas have simple derivatives, calculating the
slope of the loss for each parameter can be done relatively cheap. The output
of the network can be defined with previous definitions as

𝑓𝜙 (𝑥) ,

where 𝑓 is the network with parameters 𝜙 which receives input data 𝑥.
Knowing the slope of the loss at a parameter makes it possible to adjust this

parameter with a learning rate 𝛾 [72], [95] as

𝜙∗
𝑖 = 𝜙𝑖 + 𝛾 ⋅ 𝛿𝜙𝑖, (3.6)

where 𝜙∗
𝑖 represents the adjusted parameter 𝜙𝑖. The learning rate 𝛾 needs to be

adjusted according to the shape of the loss landscape around the parameters.
A loss landscape [93] is the loss around a parameter depending on the value
of that parameter. At a certain change of the parameter the loss may become
lower, but at a certain larger change of the parameter the loss may become
higher again, as the loss can take on any smooth curves along the values of the
parameter.

A one-dimensional loss landscape for a network 𝑓𝜙 for 𝜙𝑖 over 𝑥

𝜙𝑖

ℒ𝜙 (𝑥)

𝛾 ⋅ 𝛿𝜙𝑖

Figure 3.2: An image of a one-dimensional loss landscape over a single parameter
𝜙𝑖 in the set of parameters 𝜙 of the network 𝑓𝜙 when using data 𝑥.

A one-dimensional example is shown in in figure 3.2. This plot shows two
aspects of the loss landscape. The first is that there is a local and a global
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minimum. As the large black point in the graph moves towards the closest
minimum, it will find itself in a local minimum and cannot find the global
minimum, unless the value of the learning rate 𝛾 is large enough to overcome
the ‘bump’ in the loss between the two minima and reach the global minimum.
Second is that there are clearly higher and lower regions in the loss landscape,
which means that the learning rate 𝛾 can also not be too large, as the loss will
then jump around some minimum, but never actually reach the minimum. The
learning rate thus needs to be adjusted to some range of values that optimize
the loss without over- or undershooting the changes in parameter values. This
can be a time consuming task. In higher dimensions, the loss landscape is much
more complex and is not as intuitive as figure 3.2 might suggest [26], [51], [179].

3.1.2 Feature extraction
Raw data is not often directly fed into a neural network because it either is not
in the correct form to be given to the input nodes of the network, or because
it is better for training if the network is ‘helped’ and the data is transformed
into a form which helps the network focus on the important aspects of the data
[56]. This transformation of the data is also known as the process of extracting
features, which are then given to the network.

In the case of the network used in this thesis, the raw data is an audio
recording. It is cut into pieces of 25 milliseconds, with a hop length of 10
milliseconds. This means the start of a piece is 10 milliseconds after the start
of the previous piece, and both pieces have a length of 25 milliseconds. Mel-
Frequency Spectral Coefficient (MFSC) features [36] are computed over each
segment of audio. This is done by performing a set of steps for each segment
similar to those performed for calculating Mel-Frequency Cepstrum Coefficient
(MFCC) features [1], but for the calculation of MFSC features the last step is
left out [87]:

1. Calculating the Fourier transform over the segments. This method cal-
culates the frequencies in the sound wave and the amount that these fre-
quencies are present in the sample. The properties of the frequencies can
be inferred from the values in the audio signal, that create a wave like
pattern.

2. The frequencies are transformed to the Mel spectrum. This spectrum
changes the distribution of the frequencies from one in which every fre-
quency is equally represented on the scale of frequencies, to one in which
values are represented according to how much they are perceived by hu-
mans. This makes sure that the frequencies found in the audio that hu-
mans do not hear are taken out, while the frequencies more significant to
humans become more visible.

3. The logarithms are taken of the frequencies. This is done so that very small
amplitudes become more visible compared to the very large amplitudes for
frequencies.

From the listed steps, there is a clear reason why the MFSC over each seg-
ment is calculated. This is done to make the information that is more signif-
icant to humans better visible to further calculations in the neural network,
while making irrelevant information much less visible or invisible to the net-
work. This allows the network to better focus on the aspects of the audio most
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important to its task, and it will not waste resources trying to optimize using
irrelevant parts of the data.

3.1.3 Structure
After a very short introduction to artificial neural networks, the network used
in this report is explained. This is again not done in great detailed, but up to a
more abstract intuitive level. Please see the referenced papers for more details.

The network consists of various techniques layered on top of each other.
Output from one layer is sent to the next layer. In order, the used layers are the
following. The network is given as input the MFSC features over each segment
of audio as explained in the previous section. In then performs the following
actions.

1. Layer Normalization [16]: This technique normalizes the values given
to the neural network before further processing it, similar to batch normal-
ization [64]. An ‘object’ going into a network usually consists of multiple
values representing in. Each of these values is a ‘feature’ of the represented
object. Multiple objects can be given to the network at the same time in
form of a ‘batch’, which can be seen as a list of the objects. In batch
normalization, each feature of an object is normalized using a mean and
standard deviation of the features in the same position of all objects in
the batch. Layer normalization instead normalizes each item in the batch
individually, with a mean and standard deviation calculated over all fea-
tures in the batch together. This means that all features need to be of
the same type, which they are in this case, since the features in this case
are values from the image created using the MFSC transform as earlier
explained.

2. Convolutional layer [90], [146]: This method is based on biological pro-
cesses [69] - like much of artificial intelligence. In the case of an image
of 100 by 100 pixels, there are a total of 10000 values. Performing calcu-
lations over all of these values in various combinations is expensive, and
often unnecessary. From an image, the values from individual pixels are
often not very important, but their values in the context of neighboring
pixels form important patterns. These patterns are often more useful than
individual pixel values. In the case of a two dimensional image, the net-
work itself has various sets of smaller images, which are optimized during
training. These smaller images are then taken across the pixels in the
input image, and all values in the smaller images are multiplied at po-
sition with the values seen in the image, leading to output values. The
network adjusts these smaller images using backpropagation, so that they
represent a pattern. The output of a calculation between the pattern and
a certain position in the input image then represent the relation between
this pattern and the image at that location. This quantified relation is
then further used in the network. An example is one of the first implemen-
tations of a convolutional layer, in the neocognitron [52], which extracts
data from regions of an image, and optimizes the pattern with which this
data is extracted through rounds of training.

3. Gated Linear Unit (GLU) [41]: The GLU is an activation function.
It is based on the older Long Short Term Memory (LSTM) network [66],
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which works on sequences of data. While processing this data, the LSTM
keeps a matrix of information that is gradually adjusted as more data
passes through the network. The information in this matrix functions as
a form of ‘memory’ of aspects of the processed data. The information
in this memory can then be used for calculations over next sets of data
in the sequence. The GLU activation functions works in a related way.
Internally it works with two linear layers, which both process the incoming
data. One result is then multiplied with the with the other result taken
through the Sigmoid function. When taking the definition from formula
3.1, this looks like

𝑓 ( ⃗𝑥) = ( ⃗𝑥 ⋅ ⃗𝑣 + 𝑎) ⋅ 1
1 + exp (− ( ⃗𝑥 ⋅ �⃗� + 𝑏)) .

Here, the two linear functions are clearly visible, which both use a different
set of weights. Using the GLU, the network can learn to use the given
information to determine which information to pass on to the next layer.

4. Dropout layer [65]: A layer that sets a value to 0 with a certain prob-
ability. In this case with a probability of 0.05. The idea, and effect, of
this is that it reduces overfitting. The data a network is trained on is in
most cases not unlimited, especially if the data is not purely simulated.
During training, weights in the network are adjusted using backpropaga-
tion by using the difference between what the network gave as output and
what the expected output is. The network attempts to make better pre-
dictions for the training data. However, the network is later used on data
that was not seen during training, so the network should not only adapt
to the training data, but find patterns that exists in both training and
non-training data. With a limited amount of training data, the network
may start to find patterns in the data that are specific for the training
data alone, which is called ‘overfitting’. Overfitting will make the network
produce good results for the training data, but not for data that was not
included in the training data. Using dropout layers the presence of this
problem in the final trained network is reduced [156].

5. 26 layers of Transformers [176]: The transformer architecture makes use
of the attention mechanism introduced by Vaswani, Shazeer, Parmar, et
al. [176]. The network itself consists of an encoder part and a decoder
part. In this text only an abstract version of the transformer architecture
is discussed, the network consists of more details with implications not
discussed here. Overall, the transformer architecture works on sequences
of data, for both input and output. An example is text. Text is split
into pieces and fed to the encoder, which first creates embedding vectors
from the input. These embedding vectors are an abstract representation
of the input data, in a format that can be used in matrix calculations in
the network.
These embedding vectors are then processed using an encoder with mul-
tiple layers of self-attention and multi-layered linear networks. During
self-attention, a calculation is performed using three matrices - two ma-
trices are used to construct a matrix from which each vector decides how
much ‘attention’ is given to each input vector. The result is an output
matrix that goes through several linear layers for further processing. The
output from these linear layers can be fed to another encoder performing

19



the same type of calculations, or it can be forwarded to the decoder part
of the transformer.
A decoder takes as input (some of the) data previously calculated in the
output sequence, and the output from the encoder. The output from
the encoder represents the next part in the input sequence. The decoder
performs self-attention on the previous vectors in the output sequence,
after which cross-attention is performed using the output from the en-
coder. Cross-attention thus ‘mixes’ the previous output information and
new input information together for the next chunk of output to be calcu-
lated. Cross-attention works in the same way as self-attention, only the
two matrices that are used to construct the attention matrix come from
the encoder, instead of its own input. The result from cross-attention is
fed through several layers of fully connected linear layers, and the output
is forwarded to another decoder block, or is used in the next data in the
output sequence.
After one or more decoder blocks, the output from the last decoder block
is used to construct output by un-embedding the output vectors into prob-
abilities of certain output. Essentially the inverse operation is performed
from the embedding that happened before input data was fed into the first
encoder block.

6. Linear layer: This was discussed before around formula 3.1. In this case
the layer has 382 input nodes and 29 output nodes, with each output node
corresponding to a probability for a character in a time step.

3.1.4 Characters
The final fully connected linear layer in the network calculates 29 output values.
These 29 values are related to the probabilities of a certain character. From
values 1 to 29, the set 𝒞 of characters are shown in table 3.1 from left to right and
up to down, where the characters from the Latin alphabet are shown, together
with characters `, | and #. Here, | represents a separation between words, and
# a ‘blank’ space, meaning neither a character was identified nor a separation
between words.

Table 3.1: The set 𝒞 of characters the network calculates probabilities for, which
is the set of Latin characters and three others.

' | A B C D
E F G H I J
K L M N O P
Q R S T U V
W X Y Z #

For each time step, for each of the 29 characters a value is calculated. This
value represents the unnormalized exponential of the probability of a character
to exist here. To retrieve the normalized probabilities,

𝑝𝜙 (𝑥)𝑡,𝑐 =
exp (𝑓𝜙 (𝑥)𝑡,𝑐)

∑𝑐′∈𝒞 exp (𝑓𝜙 (𝑥)𝑡,𝑐′)
(3.7)
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is calculated, where 𝑓𝜙 (𝑥)𝑡,𝑐 is the output for the network with weights 𝜙, and
input 𝑥, and where 𝑡 is the step in time in the recording, and 𝑐 is a character of
the supported characters 𝒞 shown in table 3.1.

The probabilities from the network can now be used to calculate strings or
texts that represent the recording. Further in the thesis, a predicted text will
be written as ⃗𝑥.

3.2 Generalise: phonetic encoding
The model for the English language, a popular language, is used on a different
rare language. The letters this model calculates over the audio are fitted for the
English language, and not the target language. If both languages have sufficient
overlap in phonetic characteristics this should not be a problem, however there
are often still some sounds that are unique to a language, or have a slightly
different sound in different languages or accents. For this reason the strings
need to be normalized, to make the output more ‘general’, and details very
specific to the English language or based on context need to be filtered out. In
this section three algorithms are discussed that perform this kind of operation.
In this thesis, the methods of generalization will be mathematically defined as

g𝑛 ( ⃗𝑥) , (3.8)

where ⃗𝑥 is the ‘vector’ of characters as received from the method in section 3.1
and 𝑛 is one of the following three discussed methods

𝑛 ∈ 𝒩 = {Soundex,
NYSIIS,
Metaphone}.

(3.9)

3.2.1 Soundex
Soundex [119] is an algorithm developed to transform words into a description
of their phonetic form. A first version was created in 1918 [139]–[141]. The idea
behind Soundex is to map similar sounds to an equal character. The author
argues that the sounds of the English language are not represented well with
letters. Instead, the author creates phonetic groups of letters which allowed
for English words to be formed into their phonetic representations. This was
initially used to translate human names into a form that would be the same
across different spellings of the same name.

The algorithm
The rules of Soundex have slightly changed over time, but are currently defined
as follows [114]. The final form has a length of four character as LDDD, with the
first character L a letter, and the last three characters D digits. The rules are
that

1. the first letter of the word is taken as the first character;
2. the letters A, E, I, O, U, H, W, and Y are removed from the word;
3. any consecutive double letters are removed;
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4. a digit is added until 3 digits have been added or until no more characters
are left, for each remaining character in the word, where the digit is
• 1 in case of B, F, P, or V;
• 2 in case of C, G, J, K, Q, S, X, or Z;
• 3 in case of D or T;
• 4 in case of L;
• 5 in case of M or N;
• 6 in case of R;

and a digit is skipped if it was equal to the previous digit, unless the
character from the equal digit was separated from the previous character
in the original word by either A, E, I, O, or U;

5. if less than three digits were added, the digit 0 is added until 3 digits in
total have been added.

Evaluation
As an example, the word SPEECH would be transformed to S120, which can be
explained as

• S: The word starts with and S;
• 1: After ignoring of A, E, I, O, U, H, W, and Y, the next letter is a P which

is assigned number 1;
• 2: The next letter is the C, which is assigned number 2; and
• 0: There is no further letter, so the remaining places are filled with 0.
This allows for similar sounding letters to be encoded to the same digit, for

example D and T, while the first character of the word is always encoded directly
into the final result since this is usually pronounced very distinctively.

The Soundex algorithm will cause the words THREE and TRUE to be encoded
to the same representation T600. Whether this is correct is debatable, as the
words ‘three’ and ‘true’ are pronounced differently, and are clearly separable.
And, in the case of two words that do sound very similar, the algorithm does not
always produce satisfactory results. An example is with the similar sounding
words WEIGHT and WAIT are encoded into respectively the different forms W230
and W300, while they are very similar in sound. It should be noted that the
algorithm was created specifically for processing written names, and not words
in general which would explain some of the unexpected results.

Two obvious downsides to the Soundex algorithm are that the output is not
easily interpretable by humans, which in the case of this thesis is not a problem,
and that Soundex only allows for up to 3 digits in its output, and any digits that
would be added for other characters are skipped. This may cause the algorithm
to skip large parts of the longer words.

Other languages
The algorithm is based on the English language, but has also been adopted for
other languages. One example is the Daitch-Mokotoff Soundex algorithm [110]
which is designed to work with Slavic and Germanic names. Instead of a form
LDDD, this uses a form DDDDDD of six digits.
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3.2.2 NYSIIS
An alternative to the Soundex algorithm is the New York State Identification
and Intelligence System (NYSIIS) algorithm [164], which shows an improve-
ments over the Soundex system [133]. Where Soundex creates a more abstract
representation of a word by keeping only the first letter of the word and encoding
the rest of the word into numbers, NYSIIS creates a more human interpretable
version. Similar to Soundex, the algorithm was created for indexing names, and
not words in general although it can be used for that.

The algorithm
The algorithm creates an output of a length depending on the length of the
word the algorithm is run on. This means that unlike Soundex, there is no limit
on the length of the encoded result. The algorithm works works by

1. replacing the character sets MAC by MCC, KN by NN, K by C, PH and PF by
FF, and SCH by SSS;

2. replacing the last letters of the word if they are EE or IE by Y␢10 and if
they are DT, RT, RD, NT, or ND by D␢;

3. taking the first letter as the first character in the NYSIIS code;
4. choosing and performing one of the following actions on the next character;

• going to step 7 if no next letter follows in the word or if this character
is ␢;

• changing the current two letters to AF if they are EV, and else to A if
they are one of E, I, O, or U;

• replacing the current letter Q by G, Z by S, or M by N;
• replacing K by N if the character after it is N, and else by C;
• replacing current letter SCH by SSS, or PH by FF;
• replacing the current letter H by the previous letter if the previous or

next letter is not one of A, E, I, O, or U;
• replacing the current character W by the previous letter if the previous

letter is one of A, E, I, O, or U; or
• do nothing;

5. going to step 4 if the current letter is the same as the letter last added to
the NYSIIS code;

6. taking the current character as the next character in the NYSIIS code,
and go to step 4;11

7. removing the last letter of the NYSIIS code if it is the character S;
8. replacing AY by Y if the NYSIIS code ends with that; and
9. removing the last letter of the NYSIIS code if is the character A.

Evaluation
Using the NYSIIS algorithm, the words processed as example in section 3.2.1 can
be evaluated again. The words THREE and TRUE were assigned the same string
by Soundex. For NYSIIS, they are not assigned the same string, but rather

10Here the special character ␢ is used according to the original algorithm.
11Note that this creates a loop going back to step 4 until all characters in the original word

are processed.

23



THREE is encoded as TRY, and TRUE is encoded as TR. This can be argued to be
more correct output than what Soundex gave, as the two words are pronounced
very differently.

The other example is with two words that sound very similar when pro-
nounced, and can be claimed to indistinguishable without context. The NYSIIS
algorithm encodes the string WEIGHT as WAGT, and the string WAIT as WAT. While
the expectation would be that the two words are encoded to the same repre-
sentation, they are not. However, they differ by only one character, with the
algorithm replacing EI and AI by A and removing the H, which makes both rep-
resentations very similar to each other, with only one character difference. It
should again be noted that NYSIIS was designed for processing written names,
similar to Soundex, which may explain the imperfect results.

3.2.3 Metaphone
The algorithms of Soundex and NYSIIS are made for American names. While
they can be applied to words in general, and can output a meaningful representa-
tion, they may make mistakes due to this. An alternative to these algorithms is
the Metaphone algorithm [22], [124]. The algorithm is more similar to NYSIIS
than to Soundex, in the way that it creates a phonetic output of arbitrary
length that is better interpretable by humans than the output of the Soundex
algorithm. However, Metaphone preserves fewer character from the word than
NYSIIS, which causes it to lose more information on the one hand, but on the
other hand may create a more general phonetic version of a word than NYSIIS,
which could lead to better results when further used in this thesis.

The algorithm
The algorithm can be simplified from the original more complex algorithm.
This simplified algorithm is shown here. The algorithm encodes a word into a
combination of 16 characters, namely B, X, S, K, J, T, F, H, L, M, N, P, R, 0, W,
and Y. A word is transformed into a phonetic representation by [135]

1. reducing every double character to a single character, except for the char-
acter C;

2. dropping the first character of the word if it begins with KN, GN, PN, AE, or
WR;

3. dropping the last character of the word if the two last characters are MB;
4. replacing C by X in every substring CIA or CH, or by S in every substring

CI, CE or CY, and else by K;
5. replacing D by J in DGE, DGY, or DGI, or else by T;
6. removing G in GH;
7. removing G from GN or GNED if the word does not end with that and they

are not followed by a vowel;
8. replacing G by J if not in GG and if followed by I, E, or Y, or else replace

G by K;
9. removing H after a vowel if there is no vowel following after it;

10. removing K when it follows after C;
11. replacing P by F if in PH, and Q by K, V by F, S by X if in SH, SIO, or SIA;
12. replacing T by X if in TIA or TIO, or T by 0 if in TH, or removing it if in

TCH;
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13. removing H from substring WH if the word start with that, and removing W
as well if no vowel follows;

14. replacing X by S if it is the first character of the word, or else replacing X
by KS;

15. removing Y if it is not followed by a vowel;
16. replacing Z by S; and
17. removing any vowel that is not the first letter of the word.

Evaluation
For the strings THREE and TRUE that were also processed with Soundex and
NYSIIS, the outcome of the Metaphone algorithm for them is respectively 0R
and TR, which is again different from each other similar to NYSIIS, which would
be correct as these words sounds different to humans. However, in this case they
are different due to different pronunciations of the THR[...] and TR[...] parts
of the words, instead of the different pronunciations of parts [...]REE and
[...]RUE.

On the other hand, both Soundex and NYSIIS encoded the strings WEIGHT
and WAIT differently, while they sound similar. Metaphone in this case encodes
them both as WT, which is a better result than the other algorithms as the words
sound the same. It should be noted however on the other hand that this is also
a shorter encoded version than either NYSIIS or Soundex gave, which means
that less information is preserved.

Metaphone performing better on some strings likely is because it is, unlike
the other two algorithms, not made with only human names in mind. However,
it may be that information valuable for later steps would be available through
the Soundex and NYSIIS algorithms, while it would not be available through
the Metaphone algorithm, since the Metaphone algorithm calculated shorter
encoded versions. This depends on the processing in the next step, in which
string are matched with each other.

Newer versions
Next to the first Metaphone algorithm, a newer version was released 10 years
later called the Double Metaphone [125]. The new algorithm attempts to better
account for various ways in which words (and particularly names) can be pro-
nounced. It calculates two encoded versions for words, hence the name Double
Metaphone, and allows for both cases to be used in comparisons. If one case
does not fit, the other may fit. This version also attempts to handle various
languages other than English, and has a much more complex algorithm than
the original Metaphone.

A third version of the Metaphone was released nearly 10 years after Dou-
ble Metaphone, but was this time released commercially [126]. It is named
Metaphone 3 and improves phonetic processing of words more, achieving better
performance in English and other languages.

3.3 Matching: calculating similarity
After receiving the phonetic description of a recording, it needs to be compared
to other phonetic transcriptions to see which other phonetic description most
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likely fits. This can be done with algorithms that calculate either a ‘distance’
between two strings, or those that calculate a ‘similarity’ score. In case of the
calculation of a ‘distance’, an integer number is calculated which represents
the distance between two strings. In the case of a ‘similarity’, a value is not
calculated of how unequal two string are, but how equal they are. This is usually
a score between 0 and 1, where 0 represents no similarities between the strings,
and 1 represents completely equal strings.

While the definitions are different, and the algorithms for their calculation
can be different too, they can be used in the same way to compare transcriptions
of words. In the case of a distance measure, the description of the recording
that has the lowest number in relation to the given unknown recording matches
best. In the case of a similarity score, the recording with instead the highest
value in relation to the given recording matches best.

Several algorithms will now be introduced and discussed, with the first one
being the most simple algorithm, and the last two more complicated.

3.3.1 Hamming Distance
The Hamming distance [60] is one of the most basic algorithms to calculate a
distance between two strings. The Hamming distance is defined as

dHamming (�⃗�, ⃗𝑣) = ♯{𝑖 ∶ 𝑢𝑖 ≠ 𝑣𝑖, 𝑖 = 𝑖,… , 𝑛}, (3.10)

where �⃗� and ⃗𝑣 are two vectors, usually words, and 𝑛 is the number of values in
these vectors to compare. Here ♯ is used to denote the length of a set instead
of the more popular |… |, since |… | is later used to calculate an absolute value,
so ♯ is used to prevent confusion. Usually 𝑛 is defined by the length of �⃗� =
(𝑢1,… , 𝑢𝑛) and ⃗𝑣 = (𝑣1,… , 𝑣𝑛) with 𝑛 = dim (�⃗�) = dim ( ⃗𝑣). This raises the
issue of what happens when vectors �⃗� and ⃗𝑣 are not of the same length 𝑛. How
to handle this depends on the implementation, but the usual choices are to

• refuse the calculation;
• set 𝑛 = dim (�⃗�) if dim (�⃗�) ≤ dim ( ⃗𝑣) or else 𝑛 = dim ( ⃗𝑣) and add 𝑎 =

|dim (�⃗�) − dim ( ⃗𝑣) | to the calculated distance; or
• fill the smallest vector up with a string not present in the other vector, so

𝑛 = dim (�⃗�) = dim ( ⃗𝑣).
In the case of this thesis, the third option will be used.

Evaluation
The Hamming distance was originally created to detect errors in signals. As an
example, if on one end the string WHAT is sent and on the other end of some
communication channel the string WBAT is received, then the Hamming distance
as defined in formula 3.10 is

dHamming ([W, H, A, T], [W, B, A, T]) = 1.

For use outside of the scope of error correction, the Hamming distance has
mixed outcomes. For example, in the case of NYSIIS in section 3.2.2, the strings
WEIGHT and WAIT were encoded as respectively WAGT and WAT. By comparison
by eye, one can note there is one extra character in the WAGT compared to WAT,

26



and the distance between the two words may be best set to 1. However, in this
case the Hamming distance gives

dHamming ([W, A, G, T], [W, A, T]) = 2,

since it will find the first two character are equal to each other, but the third
characters are not with G ≠ T, and a fourth character only exists in the first
vector of characters, which is counted as an added number to the distance.

3.3.2 Levenshtein Distance
A different algorithm that measures the distance between two words is the Lev-
enshtein distance by Levenshtein et al. [92], from which the Damerau-Levenshtein
distance is also defined. Both are discussed in this section.

Levenshtein Distance
Introduced in 1965 and named after the person introducing it [193], the Lev-
enshtein distance calculates a distance between two strings. As opposed to the
Hamming distance, it does not simply check one by one which characters are
not equal, but works with the idea of counting the ‘changes’ that need to be
made to one string to make it the same as the other string. These changes can
be one of three in the Levenshtein algorithm, either

• insertion of a character in one of two compared strings,
• deletion of a character, or
• substitution of a character for another.
The Levenshtein distance can be written in the form of a number of rules.

Given the two strings or vectors �⃗� and ⃗𝑣, where �⃗�𝑖 and ⃗𝑣𝑗 represent respectively
the characters at locations 𝑖 and 𝑗 in �⃗� and ⃗𝑣, and where �⃗�0 is the first characters
in �⃗�, a distance𝐷 can be calculated by an algorithm dLevenshtein (�⃗�, ⃗𝑣) = dL (�⃗�, ⃗𝑣),
which works by

1. initializing the distance 𝐷 = 0;
2. adding to the distance 𝐷 = 𝐷 + dim (�⃗�) if dim ( ⃗𝑣) = 0, or setting the

score to 𝐷 = 𝐷+ dim ( ⃗𝑣) if dim (�⃗�) = 0, and going to step 5 if one of the
conditions was found to be true;

3. if �⃗�0 = ⃗𝑣0, then removing the first characters from vectors �⃗� and ⃗𝑣 and
going to step 2, or else going to the next step;

4. adding 𝐷 = 𝐷+ 1, and adding to 𝐷 the smallest Levenshtein distance of
the following three options in which the Levenshtein distance is calculated
as either
• adding the Levenshtein distance to 𝐷 of vectors �⃗� and ⃗𝑣 after remov-

ing the first character of �⃗�,
• adding the Levenshtein distance to 𝐷 of both vectors after removing

the first character of ⃗𝑣, or
• again adding the Levenshtein distance to 𝐷 of both vectors after

removing the first characters from both vectors;
and;

5. declaring the calculation as finished.
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The steps for the Levenshtein distance show that the algorithm is iterative.
In step 4 the Levenshtein distance is calculate for three combinations of the
strings �⃗� and ⃗𝑣, and the smallest distance is added to the total distance. This
algorithm can also be defined in a formula as

dL (�⃗�, ⃗𝑣) =

⎧{{{{
⎨{{{{⎩

max (dim (�⃗�) , dim ( ⃗𝑣)) , if dim (�⃗�) = 0
∧dim ( ⃗𝑣) = 0

dL (�⃗�1,…,dim(�⃗�), ⃗𝑣1,…,dim( ⃗𝑣)) , if �⃗�0 = �⃗�0

1 +min⎛⎜⎜⎜
⎝

dL (�⃗�1,…,dim(�⃗�), ⃗𝑣) ,
dL (�⃗�, ⃗𝑣1,…,dim( ⃗𝑣)) ,
dL (�⃗�1,…,dim(�⃗�), ⃗𝑣1,…,dim( ⃗𝑣))

⎞⎟⎟⎟
⎠

, else

(3.11)
where �⃗�𝑖 means taking the character in �⃗� at location 𝑖, with the character
positioned at 𝑖 = 0 as the first character, and where �⃗�1,…,dim(�⃗�) represents a new
string with all characters from �⃗� starting as position 1 up to dim (�⃗�), which
effectively means the first character in �⃗� is removed.

Damerau-Levenshtein Distance
Next to the three operations of inserting, deleting, or substituting a character
in the Levenshtein algorithm, the Damerau-Levenshtein algorithm [40] also al-
lows for transposition [28], which is switching of two neighboring characters.
Where the Levenshtein algorithm is defined as dLevenshtein (�⃗�, ⃗𝑣) = dL (�⃗�, ⃗𝑣), the
Damerau-Levenshtein algorithm is similarly defined as dDamerau-Levenshtein (�⃗�, ⃗𝑣) =
dDL (�⃗�, ⃗𝑣).

Evaluation
Taking again the examples of WAGT and WAT, the Levenshtein algorithm supports
adding or removing a character. This improves matching these strings compared
to how the Hamming distance worked. The two given strings give

dL ([W, A, G, T], [W, A, T]) = 1,

and the Damerau-Levenshtein distance gives the same value.
In the case that some characters were switched, the outcomes between the

Damerau-Levenstein algorithm and Levenshtein algorithm would be different
with

dDL ([W, A, G, T], [W, A, T, G]) = 1,
as opposed to

dL ([W, A, G, T], [W, A, T, G]) = 2.
It is not immediately clear if this is important the case of this thesis, since the
network identifying, not identifying or misidentifying a character is much more
likely than switching characters. However, one case in which the Damerau-
Levenshtein algorithm may perform better with output from the network is
if the network calculates probabilities for a certain character over several time
steps, and these probabilities are for example distributed over the time steps as a
normal distribution. If another letter has a similar but time shifted distribution,
then string representations calculated from the output of the network may have
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these characters in different order, depending on how strings are drawn from
the character probabilities.

3.3.3 Jaro Similarity
Instead of a distance measure, the Jaro and Jaro-Winkler similarities calculate
a score between 0 and 1, with 0 indicating that no similarities have been found
between two given strings, and 1 indicating that the strings match perfectly.
For this, the algorithm does not perform counting in a direct calculation of the
outcome like the distance measurements, but uses the count in a formula to
calculate a final similarity score.

Jaro Similarity
The Jaro similarity [79] calculates a score between two strings �⃗� and ⃗𝑣 by cal-
culating

sJaro (�⃗�, ⃗𝑣) = {0, if 𝑚 = 0
1
3 ( 𝑚

dim(�⃗�) + 𝑚
dim( ⃗𝑣) + 𝑚−𝑡

𝑚 ) , else (3.12)

where 𝑚 is the number of ‘matches’ and 𝑡 is the number of transpositions. The
rules for the number of matches are not simply the number of characters that
are in the same position, and the rules from the Levenshtein distance are also
not followed. In this case, a value of

𝑐𝑚 = ⌊max (dim (�⃗�) , dim ( ⃗𝑣))
2 ⌋ − 1

is calculated, where ⌊… ⌋ represents rounding down to the nearest smaller inte-
ger, and any characters that are within a distance of 𝑐𝑚 from each other in both
strings are found to be matching. Characters cannot be matched to multiple
characters. Once matched, two characters are taken out of the equation. The
value for 𝑚 is then the total number of characters that are matching within a
distance of 𝑐𝑚 from each other. The value for the transpositions 𝑡 is the number
of swaps of two characters that need to occur to get matching characters in the
right order.

Jaro-Winkler Similarity
The Jaro-Winkler similarity [185] builds on the Jaro similarity by introducing
a special importance for the first characters that match at the beginning of the
string, up to four characters. This means the algorithm gives strings a higher
similarity score when there are more matching characters near the start of the
strings.

The algorithm in formula 3.12 is modified with an extra term, and is defined
as

sJaro-Winkler (�⃗�, ⃗𝑣) = sJaro (�⃗�, ⃗𝑣) + 0.1 ⋅ 𝑙 ⋅ (1 − sJaro (�⃗�, ⃗𝑣)) , (3.13)
where 𝑙 is the length of the matching number of characters at the beginning
of the two strings with a maximum value of 4. The factor 0.1 is a default
normalizing factor.
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Evaluation
The Jaro similarity score is a number between 0 and 1, as opposed to the
distance algorithms. An example can be using strings SPEECH and SPEYHC,
which are two different words that - with some imagination - could represent
the same meaning. Calculating the Jaro similarity gives

𝑐𝑚 = ⌊max (6, 6)
2 ⌋ − 1 = 2,

which means characters match when they within two steps from each other.
The first three letters S, P, and E are in the same position. The second E is not
found anywhere in the second word, and similarly is Y in the second word. The
last characters C and H are switched, but are within 𝑐𝑚 characters of each other.
This means 𝑚 = 5 and 𝑡 = 1, leading to

sJaro (�⃗�, ⃗𝑣) = 1
3 (5

6 + 5
6 + 5 − 1

5 ) = 0.82,

with �⃗� = [S, P, E, E, C, H], and ⃗𝑣 = [S, P, E, Y, H, C], while the Jaro-Winkler similar-
ity would in this case give

sJaro-Winkler (�⃗�, ⃗𝑣) = sJaro (�⃗�, ⃗𝑣) + 0.1 ⋅ 3 ⋅ (1 − sJaro (�⃗�, ⃗𝑣)) = 0.88,

where 𝑙 = 3, because the first three matching characters are in the same position,
up to a maximum of four characters.

The Jaro-Winkler similarity gives importance to early characters that match
and are in the same position. If there is noise in the recording, and in the
phonetic transcript, this means the position of the noise can have a great impact
on the Jaro-Winkler similarity scores. For example, take the strings SPEECHX
and XSPEECH. In these strings, X represents noise. In the first string, the noise
is at the end of the string, while in the second string the noise appears in the
beginning. If there strings are to be matched with SPEECH, then for the Jaro
similarity

sJaro ([S, P, E, E, C, H], [S, P, E, E, C, H, X])
= sJaro ([S, P, E, E, C, H], [X, S, P, E, E, C, H]) = 0.95,

while the Jaro-Winkler similarity gives

sJaro-Winkler ([S, P, E, E, C, H], [S, P, E, E, C, H, X]) = 0.97

≠ sJaro-Winkler ([S, P, E, E, C, H], [X, S, P, E, E, C, H]) = 0.95,
which is due to the extra term in formula 3.13 which gives importance to the up
to four first characters that match and are in the same position at the beginning
of the string. Having the noise X at the beginning of the string sets 𝑙 = 0 and
cancels this term out.
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Chapter 4

Experiments

With the implementation of the three steps and the methods belonging to them
explained in chapter 3, experiments can be conducted. In these experiments
there are three aims, they are to

• compare the phonetic encoding models explained in section 3.2,
• compare the scoring models to compare phonetic encodings in section 3.3,

and
• investigate the possibilities of the combinations of the methods for match-

ing speech segments.

4.1 Language
The experiments are performed on a single language. This language is Dagbani,
a language spoken in parts of Ghana. Among the people who spoke the language,
the percentage being able to write the language was less than 20% in smaller
settlements [20]. The language is one of six languages selected by the Ghanese
government for regional radio and television broadcasts [6], and is currently not
endangered.

Table 4.1: The currently defined set of characters for the written version of the
Dagbani language [19].

a b ch d e ɛ
f g gb ɣ h i
j k kp l m n
ny ŋ ŋm o ɔ p
r s sh t u w
y z ʒ ’

The Dagbani language uses a total of 34 characters for their alphabet. This
includes many characters of the Latin alphabet, with the addition of several
others. The entire alphabet is shown in table 4.1 [19]. Of these characters, it
can be shown that those with a phonetic overlap with characters from the Latin
alphabet are the most used in the languages [33], [160], [173].
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Data set
From the Dagbani language, ten words representing the letters one to ten are
used in the experiments. The number zero is not used, because while this word
is strictly speaking defined as ‘muɣim’, words like ‘babiɛlifu’, ‘baabi’, ‘fako’,
‘muɣimuɣi’, and ‘shɛli’ are used to mean ‘zero’ as well. Although these words
do not exactly represent zero, they represent a form of ‘nothingness’, which is
often interpreted as equal to the word ‘zero’. Therefore, ‘zero’ is taken as a not
clearly defined word in Dagbani. The used Dagbani words [113], their romanized
version [24], and their English translation are shown in table 4.2.

Table 4.2: The Dagbani words with romanized form [24], English translation,
and number of samples in the used data set [142] for the words used in the
experiments, as defined in a Dagbani dictionary [113].

Dagbani word
(romanized form) English translation samples
iin yes 720
ai, aayi, iiyi no 710
yini, zaɣ’ yini12
(yini, zagyini) one 218
ayi two 223
ata three 220
anahi four 223
anu five 220
ayɔbu
(ayobu) six 219
ayɔpɔin, apɔin13

(ayopoin, apoin) seven 224
anii eight 222
awɛi
(awei) nine 219
pia ten 162

For the words in the experiments, recordings from a data set [142] have been
used. This data set included the word zero in Dagbani, which was not used due
to previously mentioned reasons. Table 4.2 also contains the number of samples
of each word that have been used from the data set.

Dialects
This thesis attempts to use the phonetic aspects of the words in Dagbani to
match recorded words with each other. For this, it is important to note the dif-
ferences in which speakers of the Dagabani language may pronounce the words.
There are three main dialects in Dagbani [2]. The first is Tomosili, which is

12The word zaɣ’ yini was present in the used data set [142] in romanized form, and is
composed of yini and zaɣ’, described in entry “zaɣa2” in the dictionary by Naden et al. [113].

13The word apɔin was found in the data set [142] in the romanized form, but not in accessible
dictionaries. The word is used however in government publications [129], by organizations
[83], and on various sites [184].
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known as the western dialect and is spoken around the region of Tamale. The
eastern dialect is Nayaɣili, which is spoken in Yendi, the capital of the Dag-
baŋ Kingdom. Finally there is the dialect Nanunli14, which is spoken by the
Nanumba ethnic group. Both Nayaɣili and Tomosili are languages of the Dag-
bamba people within the Dagbaŋ Kingdom, while the Nanunli dialect of the
Nanumba people comes from the Nanuŋ Kingdom.

The different dialects can be shown to change the phonology of words by
deletion, compounding, lengthening and shortening of certain phonological char-
acteristics [74], [75]. Lengthening and shortening refers to the longer or shorter
pronunciation of vowels in certain combinations of letters. Deletion refers to
when the pronunciation of a character is skipped, for example when the dialect
adds another set of characters to a word which causes the ‘deleted’ character
to not be pronounced. The different Dagbani dialects are not accounted for or
annotated in the data set used in this thesis.

English
This thesis uses English as the language for the transliteration of recordings to a
phonetic encoding in the form of the Latin alphabet. This means that acoustic
information specific to Dagbani, and not present in the English language, may
be lost in the process. The other way around, Dagbani has cases in which
English words are used and transformed to a more ‘Dagbani-like’ pronunciation.
For the adaptation of an English word, the characters in strings of consecutive
consonants are changed. Usually vowels are added [76] between the consonant,
which changes pronunciation.

4.2 Text
The network calculates probabilities over characters at each time step. One
character at each time step is then selected, and all selected characters are joined
into a single string, which represents the recording. This string will include non-
alphanumerical characters from table 3.1 like ', |, and #. Since the methods
defined in section 3.2 cannot deal with these characters, they are removed.
Furthermore, the network may identify consecutive time steps to contain the
same character, while these characters are not spoken multiple times in a row.
To account for this, consecutive sets of equal characters are replaced by a single
character.

4.2.1 Probabilities
Each identified string ⃗𝑠 has a probability 𝑝 ( ⃗𝑠) which can be calculated using
the probabilities from the network with in formula 3.7

𝑝 ( ⃗𝑠) = ∏
𝑡=1,…,𝑇

𝑓𝜙 (𝑥)𝑡,{𝑐𝑡= ⃗𝑠𝑡−1} , (4.1)

where 𝑇 is the total number of time steps, ⃗𝑠 a string of length 𝑇 , 𝑥 is the data
going into the network 𝑓𝜙 from formula 3.7, 𝜙 are the parameters of the network,

14Nanunli is sometimes written as Nanuni.
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and ⃗𝑠𝑡−1 = 𝑐𝑡 ∈ 𝒞 represent a character chosen from the set of characters 𝒞 at
a time step 𝑡.

For use in an implementation, a recording can be evaluated in various ways.
The recording can be assigned the text that has the highest probability according
to the model, by simply picking 𝑐𝑡 ∈ 𝒞 at each time step 𝑡 with the highest
probability 𝑓𝜙 (𝑥)𝑡,𝑐𝑡 , and concatenating the chosen characters into the final
string ⃗𝑠.

A second method is by not picking the text with highest probability, but a
set of texts with a minimal probability. For this, the minimal probability needs
to be set. The minimal probability can be defined for the texts themselves,
after which all texts with a probability higher than the minimal probability are
selected. This raises a problem however, as the lengths of the recordings differ,
while the minimal probability would be set the same for each recording.

For example, a recording may be split in 50 time steps. If at each time step
the chosen character has a probability of 0.98 (or 98%), then the total probability
𝑝 ( ⃗𝑠) = ∏𝑡=1,…,𝑇=50 𝑓𝜙 (𝑥)𝑡, ⃗𝑠𝑡−1

= 0.9850 = 0.36, while for a recording of 𝑇 =
100 time steps, the total probability 𝑝 ( ⃗𝑠) = 0.98100 = 0.13. This shows that
even though only characters of a high probability, 0.98, have been chosen, the
probabilities of the identified strings themselves differ greatly due to length.
This means the minimal probability for a string cannot be static among all
recordings, but needs to be adjusted according to length.

Instead of choosing a minimal probability per string, an alternative is using
only a probability per character. For example, one can define that the mini-
mum probability for a character needs to be 0.2 before it is included in a string.
At each time step, every previous string would be appended with every char-
acter that has a high enough probability. This means that if there is a time
step at which several characters have a high enough probability, the number of
candidate strings increases.

Having retrieved a set of texts ⃗𝑠𝑖 with probabilities, the probabilities can be
normalized, representing the probabilities of retrieving each selected text given
the minimal character probability with

𝑝 ( ⃗𝑠1|𝑝𝑐 > 0.2) = 𝑝 ( ⃗𝑠1)
𝑝 (𝑝𝑐 > 0.2)

= 𝑝 ( ⃗𝑠1)
∑𝑖 𝑝 (𝑝𝑐 > 0.2| ⃗𝑠𝑖) ⋅ 𝑝 ( ⃗𝑠𝑖)

= 𝑝 ( ⃗𝑠1)
∑𝑖 1 ⋅ 𝑝 ( ⃗𝑠𝑖)

= 𝑝 ( ⃗𝑠1)
∑𝑖 𝑝 ( ⃗𝑠𝑖)

,

(4.2)

where 𝑝 (𝑝𝑐 > 0.2| ⃗𝑠𝑖) represents the chance that every character in ⃗𝑠𝑖 has a
probability high than 0.2, which is equal to 1 since the texts ⃗𝑠𝑖 were chosen
based on this, so the formula becomes a simple case of normalization.

A case that can happen is that the probability is set to such a value that
no character in a time step can be selected. In this case, the time step can
be ignored and one may move on to the next time step, or the character with
the highest probability is selected in any case. If the time step is skipped, it is
possible that for no time step a character could be selected, in which case no
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textual representation of the recording can be found. In this case the text can
be set to an empty string, or the most likely text can be selected.

4.3 In-word comparison
The in-word comparison means that strings representing phonetic encodings
for the recordings from the same word are compared with each other. Each
recording only needs to be translated to English phonemes with the details in
section 3.1 once. After this, it is generalized with one or more of the methods of
section 3.2, after which words can be matched with one or more of the methods
described in section 3.3.

Each recording is thus translated to a textual form. After this the strings
can be further processed and compared. Comparing happens in several steps.
Since the used data set [142] is unfiltered, there is an expectation of noise, which
means the data set may contain recordings that do not contain the supposedly
spoken word at all, or recordings that contain the word, but contain signifi-
cant background noise which makes the first step of translating the recording
to English phonemes not easily possible. Therefore the first step is to match
recordings of the same word with each other. This will create clusters of sim-
ilarities, the recordings that match each other well will have low distances or
high similarities assigned, while the opposite is true otherwise.

This comparison happens by taking all recordings of a word. Each recording
is processed using the methods in sections 3.2 and 3.3. After each recording of
a word is matched with all other recordings of the same word, the scores can
be averaged. Recordings that are translated to the same phonetic transcription
will then get the same average score compared to all recordings, and noisy
recordings with different sets of assigned phonetic characters will get a lower
score assigned. Assuming the majority of the recordings are not too noisy,
they will cluster together as the group of recordings with the highest average
similarity or lowest average distance.

This allows for the recordings to be analyzed and for data to be possibly
cleaned. However, in this case the decision is made for data to not be cleaned,
as in a real implementations used by real people similar noise as in the data set
would be found.

Furthermore, comparing similarities and clusters withing the recordings of
a single word allows for the different methods in sections 3.2 and 3.3 to be
compared. More can then possibly be said about which method may be best be
used for in-word comparison to handle noise.

4.3.1 Combining methods
An extension on the proposed in-word experiment is using several methods at
the same time for a comparison. This gives several possibilities of combinations
between the three methods of generalizing a phonetic translation of the word,
and three methods of matching these generalizations.

Multiple methods could be combined by averaging their results. For this,
the methods that provide a distance measure need to be changed to provide a
similarity score instead, so they can be used in combination with other similarity
scoring methods. This can for example be done by scaling a given distance using
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the length of the string and transforming it to a similarity score, for example
by

sHamming (�⃗�, ⃗𝑣) = 1 − dHamming (�⃗�, ⃗𝑣)
max (dim (�⃗�) , dim ( ⃗𝑣)) (4.3)

or similarly with for example sDamerau-Levenshtein using dDamerau-Levenshtein. This
allows for an averaged score

s𝓂 (�⃗�, ⃗𝑣) = 1
♯𝓂 ∑

𝑚∈𝓂
s𝑚 (�⃗�, ⃗𝑣) (4.4)

to be calculated, where subset

𝓂 ∈ ℳ = {Hamming,
Damerau,
Damerau-Levenshtein,
Jaro,
Jaro-Winkler}.

(4.5)

The total score calculated in formula 4.4 can be extended with the three
methods in section 3.2 as

s𝓃,𝓂 (�⃗�, ⃗𝑣) = 1
♯𝓃 ⋅ ♯𝓂 ∑

𝑛∈𝓃,
𝑚∈𝓂

s𝑚 (g𝑛 (�⃗�) , g𝑛 ( ⃗𝑣)) , (4.6)

where subset 𝓂 was previously defined, subset 𝓃 is defined as in 3.9, and where
�⃗� and ⃗𝑣 are defined as the two strings being compared. Note that formula 4.6 is
the formula that can be generally used for any comparison, for example by using
only the NYSIIS method and matching using only the Damerau-Levenshtein
distance, the subsets 𝓂 = {Damerau-Levenshtein} ∈ ℳ and 𝓃 = {NYSIIS} ∈
𝒩 can be used.

Next to formula 4.6, the algorithms can also be mixed using two mixing
vectors dim ( ⃗𝑞norm.) = 3 and dim ( ⃗𝑟match) = 5, which are used as

𝑠 ⃗𝑞norm., ⃗𝑟match,𝓃,𝓂 (�⃗�, ⃗𝑣) = 1
3 ⋅ 5 ∑

𝑛∈𝒩,
𝑚∈ℳ

⃗𝑟match,𝑚 ⋅ ⃗𝑞norm.,𝑛 ⋅ s𝑚 (g𝑛 (�⃗�) , g𝑛 ( ⃗𝑣)) , (4.7)

which is similar to formula 4.6, or similarly with a mixing matrix 𝑇 of size 3×5
and formula

𝑠𝑇,𝓃,𝓂 (�⃗�, ⃗𝑣) = 1
3 ⋅ 5 ∑

𝑛∈𝒩,
𝑚∈ℳ

𝑇𝑛,𝑚 ⋅ s𝑚 (g𝑛 (�⃗�) , g𝑛 ( ⃗𝑣)) . (4.8)

Formulas 4.7 and 4.8 are respectively 3 + 5 = 8 and 3 ⋅ 5 = 15 dimensional
optimization problems, which can be solved by using a minimization algorithms,
for example the Nelder-Mead algorithm [117] with constraints and bounds and
a consistent, or differential evolution [161], [162] in the case of more stochastic
results.
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4.4 Cross-word comparison
Cross-word comparison is the comparison of recordings of different words be-
tween each other. The goal of this thesis is to explore how well the proposed
methods can work with matching a single recording of an unknown word to a
set of recordings of different known words. There are several ways in which this
comparison can happen, which overlap with each other.

4.4.1 1-to-1 comparison
In the simplest interpretation of cross-word comparison, an unknown recording
is compared to a known recording of each candidate word. One recording from
each candidate word is processed using discussed methods, and is then added to
the set of recordings of words to ‘choose’ from. An unknown recording is then
taken, processed, and matched to each of the known recordings. The recording
with the highest similarity score according to formula 4.6 is the best match, and
the decision is then made that the word registered with that known recording
is the word equal to the word spoken in the unknown recording.

By doing this many times over, average rates of correctly matching a word
can be calculated. For this, the ‘unknown’ recording is randomly chosen from
the pool of recordings from the word for which this rate needs to be calculated.
When matching correctly, the chosen recording should match best with the
recordings of the pool it was chosen from, and not with recordings from other
words. The probabilities of correctly matching can be calculated for every word
in this way, and these can be compared to see which word has recordings that
match better with the word itself than with other words.

Correction
Next to calculating probabilities for every word to match a recording correctly,
an overall statistic can be calculated over all words to give some sense of how
well the used combination of normalization and matching algorithms works. For
this comparison a mean and standard deviation trivially defined as

𝜇 (�⃗�) = ∑𝑖 𝑢𝑖
dim (�⃗�) and 𝜎 (�⃗�) = √∑𝑖 (𝑢𝑖 − 𝜇 (�⃗�))2

dim (�⃗�)

can be calculated. Here, �⃗� are the probabilities for correctly matching the used
words, with one value for each word. The mean 𝜇 (�⃗�) then represent the mean
probability of correctly matching one of the used words.

On the one hand, the mean should be as high as possible, since the words
should be correctly matched as much as possible. On the other hand, the
standard deviation should be as low as possible, since there should be some
stability in how well words are matched. As a first example, if two words are
considered, and a correct match with one word is found with a 100% probability,
while the other word matches correctly with a 0% probability, then the mean
probability will be 𝜇 = (1 + 0) /2 = 0.5, or 50%, while the standard deviation
will be 𝜎 = (√(1 − 𝜇)2 + (0 − 𝜇)2)/2 = 0.5. As a second example, if both
words have a 50% probability of matching correctly, their mean 𝜇 = 0.5 again,
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while their 𝜎 = 0. In these cases, the second example would be preferred, which
can be identified using the low value for the 𝜎.

When calculating an overall statistic for how well the algorithms perform,
the mean should be corrected for by the variability, for which the standard
deviation can be used. In this thesis, this correction is done using

𝜇corrected = 𝜇
(𝑎 + 𝜎)𝑐 , (4.9)

which is based on the coefficient of variation [49] CV = 𝜎
𝜇 , which calculates

a variability of the data given the mean. In this case, the inverse coefficient
of variation is used, to correct the mean with a factor based on the standard
deviation, with an additional factor 𝑎 > 0 to prevent a blow up of 𝜇corrected → ∞
as 𝜎 → 0. Variable 𝑐 in 4.9 defines how much the standard deviation should
contribute to the correction. Here, this is set to 𝑐 = 1, which mimics the inverse
coefficient of variation. Variable 𝑎 > 0 is set to 0.1, which is taken as a significant
standard deviation, with the idea that this is the value above which which the
standard deviation becomes noticeable to a user.

Indecision
One important aspect to the comparison of a recording with multiple different
words is when the similarity score to two different recordings is the same. There
are then two options. Either a random word can be picked from the words that
matches the best, or indecision can happen - the refusal to decide on a best
matching word.

The first option of picking a random word would not be great from a user
and testing perspective. By introducing randomness, debugging becomes more
difficult, and the user may become confused if too much information is shown
to explain this randomness. From a design perspective it is often better to not
show too much information to the user [104]. In general the idea of the algorithm
is to find the best match among match scores, therefore the assumption is that
a case of equal similarity scores happens only in few cases. If the user would
be notified upon selecting a random match, the user may be confused since
this is a rare event. The event may also be missed, or the final decision by
the user might be to not pay too much attention to it, or interpreting this as
correct output from the underlying algorithm. Therefore, action may not be
taken upon being notified of a random outcome being chosen, which may lead
to negative effects if the random result is trusted as being a correct result. These
mentioned complications and complexities show that the option to choosing a
random outcome from equally best matching results is not the best option with
the end-user in mind.

The second option is then to refuse choosing a matching word. This means
the a new recording needs to be given to retry finding a best matching word
to this recording. This has one clear downside - there is the possibility of
requiring multiple recorded samples before a match can be found, this would
also negatively affect the user experience.

When performing an experiment many times for a single word, a rate of inde-
cision can be calculated, which represents the number of retries that are needed
before a match is found. For this rate, a mean and standard deviation can be
calculated, and formula 4.9 can again be used to correct the mean indecision
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rate with the standard deviation. However, the variables 𝑎 and 𝑐 would take
on different values in this case. When correcting the rate of a correct match,
the probability of getting a correct match was lowered if the standard deviation
was higher, as a higher standard deviation would have a negative effect on the
user experience. In the case of the indecision rate however, a higher standard
deviation should increase value for the corrected indecision rate, since the in-
decision rate is already perceived as negative when its mean value is high. To
ensure this, 𝑐 < 0 and in this case simply 𝑐 = −1 is chosen. Variable 𝑎 = 1.1,
higher than the 𝑎 = 0.1 used for the previous correction, since the effect of the
standard deviation in the indecision rate is already on top of the negative user
experience from a high indecision rate, and so the ‘extra’ negativity in the user
experience from a higher standard deviation is a secondary effect and should
have a smaller impact.

Combining statistic
With the above sections two separate statistics are calculated - that for the
probability to match correctly and the rate of indecision. Generally, the prob-
ability to match should be as high as possible, while the indecision rate should
be as low as possible. A single statistic can be calculated by combining these.
For this, formula 4.9 is re-used, but with different variables as

𝑠 = 𝑝match
𝑟𝑑indecision

, (4.10)

where 𝑑 again represents how much the indecision rate should count in the
combined statistic. In this case, a difference in low indecision rates may seem
large when compared to each other, for example the rate of 0.1 is twice as large
as the lower rate of 0.05, however from a user perspective this may not be very
noticeable. On the other hand, a rate of 1 is twice as large as 0.5, but is very
noticeable. Finally a rate of 10 - meaning 10 tries need to be done before a match
is found - is twice as large as 5, but from the end users perspective these may
both be considered unusable, and therefore not be very different in perception.

Overall, the indecision rates closer to 1 should affect the single statistic less
than rates away from 1 - the either the 0 or ∞ sides. For this reason, 𝑑 < 1 in
formula 4.10, and 𝑑 = 0.5 in this case.

Algorithm comparison
Using the combined statistic and the formulas in equation 4.6, 4.7, and 4.8, the
combination of statistics can be compared to see which combination or set of
mixing variables gives the best results.

4.4.2 1-to-many comparison
Next to the 1-to-1 comparison, there are other types of comparisons that can be
done. The 1-to-1 comparison compared one recording to one sample recording
of each of the candidate words. Another comparison is comparing one recording
to multiple recordings of each candidate word. This is a 1-to-many comparison.
Multiple scores are then calculated between the given unknown recording and
the available recordings of each word. As with the 1-to-1 comparison, a decision
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then needs to be made with which word the given unknown recording matches
best.

Highest similarity
The first obvious implementation of this, is by simply picking the recording with
the highest similarity score to the given unknown recording, and taking the word
attached to that recording as the word matching to the unknown recording.

Highest 𝑛 similarities
Instead of choosing the single best similarity score, a different algorithm is
choosing the candidate word with the best 𝑛 similarity scores as the matching
word. This can be interpreted in two ways.

The first is that the top 𝑛 similarity scores of all sampled recordings to com-
pare to need to be of the same word to decide on a match with that word.
This has the upside that more samples need to match before a decision is made,
which will likely give the decision a higher likelihood of being correct compared
to the previous strategies. However, a downside is that an indecision may hap-
pen more frequently. Since the top 𝑛 similarity scores all need to be of the same
candidate word before a decision is made, the chance of indecision is higher than
when only the top score is used to make a decision, as not a single other word
can have a recording with a similarity score between the top 𝑛 similarity scores.
There would at the very least be a linear relation between the rate of indecision
and the value of 𝑛 in this scenario.

A second interpretation is that the top 𝑛 similarity scores are taken, and the
candidate word that is most represented in those top scores is chosen as match
for the unknown word. This has the upside that the chance for indecision is not
as high for increasing 𝑛.

When choosing the top 𝑛 similarity scores, there can be a case in which
similarity scores are the same. For example if the 𝑛-th highest similarity score
occurs three times, and the top 𝑛 similarity scores need to be taken, then a
decision has to be made on which of the three recordings with equal similarity
scores to include. In the case of this thesis, all three are included. This can
cause the top 𝑛 recordings with highest similarity scores to actually become a
top 𝑛+𝑚 set of recordings, where the extra 𝑚 recordings are included because
their similarity score is the same as the 𝑛-th highest similarity score.

4.4.3 Multiple probable texts
The previous methods described using only the most likely text per recording
to match recordings with each other. However, each recording can have multi-
ple probable texts calculated for it. When choosing only the most likely text,
information in the form of another probable texts is thrown away. Keeping this
information may improve probabilities of matching the right word, especially
under a low number of recordings or high amounts of noise.

While not experimented further with in this thesis, it is worth mentioning
this is an option to improve correct matching probabilities. Instead of using
one text per recording, all texts with either a probability higher than a certain
percentage, or a probability close to the highest probability can be used for
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matching. This means that when using multiple recordings to match against,
the total number of texts for these recordings is at least as high, and likely higher,
than the number of recordings themselves. The previous described method may
then be used in the same way on this larger number of texts to find a match.

One important aspect to keep in mind is that the number of texts extracted
from a recording my be different depending on the algorithm used to calculate
these texts. When the number of texts for one recording is high, while low for
another recording, the recording with more extracted texts is more represented
in a set of texts to match against than the recording with a lower number
of texts. To correct for this, some weight should be given to each text of a
recording, so that the total of these weight adds up to 1 for each recording.
In that way, recordings with different numbers of texts each will have an equal
weight in the result.

4.5 Summary
The previous sections described various ideas and theories used in the experi-
ments. The experiments aim to show the in-word and cross-word comparisons
as described in those sections, as well comparisons between the different used
algorithms. Each experiment consists of three steps. Phonetic transcriptions are
created of words, then these transcriptions are generalized using one or more of
the Soundex, NYSIIS, and Metaphone algorithms, and finally similarity scores
are calculated between them using one of or more of the Hamming, Levenshtein,
Damerau-Levenshtein, Jaro, and Jaro-Winkler similarity algorithms.

With formula 4.6 combinations of these algorithms can be used. With the
list of candidate words and their recordings, generalizing algorithms and match-
ing algorithms, a multidimensional problem is created which can be difficult to
analyze thoroughly. Therefore, not all combinations of algorithms will be ex-
perimented with at all times, but between experiments decisions are made to
continue with one or a selection based on previous results.

In the results, the Damerau-Levenshtein and Jaro-Winkler algorithms are
represented with respectively the strings damerau and winkler, while the other
algorithms are represented with their own name.
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Chapter 5

Results

With the theory and ideas as described before, the results are presented in
this chapter. The experiments were performed in a Jupyter-Notebook with the
various packages mentioned in the acknowledgments section. The source code
for the experiments is described in section B.2.

5.1 Model
The experiments start with a model to get a phonetic transcription in the En-
glish language. After converting a given audio file to a WAV file with a single
channel and 16000 hertz, it is fed to the network. For this, it is split up into
pieces of 25 milliseconds each, with a step size of 10 milliseconds, and probabil-
ities are calculated for each character at each time step.

Figure 5.1 shows the probabilities at each time step for a recording of the
word ‘anii’15. As can be seen in this figure, character # has the highest proba-
bility in most time steps, which indicates no character was identified. Around
time steps 50 to 70, high probabilities are seen for several of the alphanumerical
characters, and at the final time step, character ' is favored, which indicates a
split between spoken words.

As was previously explained, the probabilities per character can be used
to construct pieces of text that represent the English phonetic description of
the recording with a certain probability. Table 5.1 shows all pieces of text
constructed from characters with a probability of at least 0.2 per character.

The word in the recording that was used was ‘anii’, and listening to the
recording itself, this word is clearly there, and understandable in English when
pronouncing ‘anii’. It is thus expected that the texts extracted from the proba-
bilities in figure 5.1 correspond to this, and looking at table 5.1, this is indeed
the case. The string with the highest probability ANE indeed comes the closest
to what was heard in the recording, when pronouncing the ii and as an English
e. The strings following after ANE, like INE, ANI are also clearly close to what
is being said. As the probability of a string goes down, the correctness of the
text as interpreted by a human compared to what said in the recording also
goes down, although they keep a connection to ‘anii’. The network favors the

15For this plot, recording “Eight - Anii/recording-25ad2f6b-8b23-4107-a91d- ⌋
75422febe027.3gp” was used from the data set.
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Probabilities per time step for each character
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Figure 5.1: This plot shows the probabilities at each time step for every char-
acter supported by the model. Probabilities are normalised per time step. The
used recording is of the word ‘anii’.

Table 5.1: This table shows the constructed strings from the characters in figure
5.1 for a recording of ‘anii’ with a probability of at least 0.2 per character. The
strings have been cleaned, meaning non-alphanumerical characters have been
removed and consecutive repeated characters have been replaced by a single
character. The probabilities have been normalized with formula 4.2. The entire
table is split in two.

probability text
0.167 ANE
0.122 INE
0.089 ANI
0.080 ANES
0.065 INI
0.064 ANY
0.058 INES
0.047 INY
0.042 ANIS
0.040 ANIE

probability text
0.031 INIS
0.030 ANYS
0.029 INIE
0.028 ANYE
0.022 INYS
0.021 INYE
0.019 ANIES
0.014 INIES
0.013 ANYES
0.010 INYES

simplest representation, and goes into more complex and longer representations
as the probability of a text goes down.

This thesis will now continue with simply using the phonetic transcription
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with the highest probability.

5.2 In-word comparison
An in-word comparison is now done. This compares similarity scores within
a group of recordings of the same word and not between words. Figure 5.2
shows this for the words ‘aayi’ (‘no’ in English) and ‘anahi’ (‘four’ in English)
in respectively figures 5.2a and 5.2b in the form of a histogram of the aver-
age similarity score for each recording compared to the other recordings of the
same word. Here, the Metaphone and Jaro algorithms are used for respectively
normalization and matching.

Histograms of average Metaphone in-word Jaro similarity scores
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Figure 5.2: Histogram of the average similarity per recording of the word ‘aayi’
(‘no’) on the left and ‘anahi’ (‘four’) on the right compared to the other record-
ings of the same word, using phonetic string generalisation with the Metaphone
algorithm and matching with the Jaro similarity.

In figure 5.2a two major densities are found, the highest one being around
the average score of 0.75, and the other one at the average scores close to 0.
Around 0.45 and 0.5 there are some smaller densities. To inspect these closer,
the combinations of score, phonetic transcription, and normalized string are
counted and shown in table 5.2a for all counts higher than 1. The normalised
string with highest count is I, coming from I, IH, and IE, which shows that the
‘aa’ part in the word ‘aayi’ is not found well. The normalized string I is also
very generic, which has the risk that it can be easily confused with normalized
strings of recordings of other words which may also end up as I. The strings
with a low similarity of less than 0.1, are more noisy, where strings like MHM,
UHUH, or AREYOU are understood. It is reasonable and correct that these are
assigned low scores, because they have a low similarity with other recordings.

Looking at the figure 5.2b for ‘anahi’ (‘four’), the concentrations of average
similarity scores are more spread out between the values 0.35 and 0.7. The
details are again shown in table 5.2b, which makes it clear that more details
are extracted in the phonetic transcription then in table 5.2a. The best most
often found string is for IKNOW with normalized string IKN. When pronouncing
the word ‘anahi’, and string IKNOW as they would be by an English speaker,
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Table 5.2: The average similarity scores per recording for a word with other
recordings of the same word are shown in these tables for the word ‘aayi’ (‘no’)
and ‘anahi’ (‘four’) respectively. The average similarity score, phonetic (phon.)
transcription, and normalised (norm.) string are shown, together with the count
this combination of three values was found in the histogram in figure 5.2.

(a) aayi (no)

score count phon. norm.
0.749 500 I I
0.749 4 IH I
0.749 4 IE I
0.516 2 IS IS
0.447 2 ISIT IST
0.081 2 AHET AHT
0.058 24 MHM MHM
0.058 2 UHIT UHT
0.054 3 AN AN
0.052 2 MH MH
0.046 4 UHUH UH
0.046 27 HI H
0.045 6 AREYOU ARY
0.044 2 AYE AY
0.043 7 A A
0.043 3 AH A
0.008 3 YE Y
0.0 7

(b) anahi (four)

score count phon. norm.
0.715 3 IKNOWT IKNT
0.682 8 IMNOT IMNT
0.660 9 INOT INT
0.660 6 INIGHT INT
0.660 3 INAT INT
0.611 5 IKNOWIT IKNWT
0.603 11 INOW IN
0.603 4 INO IN
0.585 58 IKNOW IKN
0.537 5 ATNIGHT ATNT
0.520 2 ANDTHEN ANT0N
0.456 8 ANIGHT ANT
0.456 4 ANDI ANT
0.456 3 AND ANT
0.456 2 ANIT ANT
0.420 2 UNIGHT UNT
0.418 4 ONIGHT ONT
0.415 2 IMA IM
0.404 2 ILIKE ILK
0.382 2 I I
0.379 3 ANE AN
0.379 2 AN AN

clear similarities are found. It makes sense that IKNOW would be a phonetic
transcription according to an English phonetic model. Opposed to the previ-
ous table, this table and the histogram show that there are various phonetic
transcriptions that match better than the one that was found most. These are
from noisy recordings compared to the ones for IKNOW, which still clearly include
the target word, but for which other (noisy) details are also found. The reason
that these words match with a higher similarity is because the Jaro similarity
algorithm finds characters match when they are closely located to each other,
which gives the strings which had extra details extracted due to noise next to
the ‘main’ details more likely to match both the ‘main’ transcription and some
of the noisy ones, giving them a higher average similarity score.

The histograms in figure 5.2 for ‘aayi’ and ‘anahi’ can be created for all
twelve available words. Figure 5.3 shows these histograms with Metaphone and
the Jaro similarity algorithms for all words, stacked on top of each other. The
histograms for ‘aayi’, ‘ayi’, and ‘pia’ are very similar to each other, for which the
explanation behind the histogram in figure 5.2a can be used. Words that are
defined in two ways, meaning those for ‘ayɔpɔin’/‘apɔin’ and ‘yini’/‘zaɣ’ yini’
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Histograms of average Metaphone in-word Jaro similarities
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Figure 5.3: Image of histograms similar to that in figure 5.2, where the his-
tograms have now been normalised and are stacked on top of each other. Each
histogram is for a different word and the Metaphone and Jaro similarity algo-
rithms have been used.

both show a clustering of average similarities near 0.5. This would make sense if
the distribution of the two words is roughly equal in the data set, giving a 50%
chance of matching one or the other. Finally, there are the recordings for which a
single word is defined, but which do not show a clear density in average similarity
score. These recordings are likely more difficult for the phonetic algorithm to
handle, or are more easily affected by noise.

The previous figures and tables have been created with the Jaro similarity
algorithm, but other algorithms are available as well. Using again the Meta-
phone algorithms and each of the five matching algorithms up to a combination
of two, the plot in figure 5.4 shows a histogram for each combination stacked
on top of each other, for the word ‘anahi’.

Looking at the distributions for the single algorithms in figure 5.4, meaning
the top five histograms, those for the Hamming, Levenshtein and Damerau-
Levenshtein distance algorithms are nearly the same, with small differences.
The distributions for the Levenshtein and Damerau-Levenshtein algorithms are
the same, which would mean that the transposition ability in the Damerau-
Levenshtein algorithm over the Levenshtein algorithm has no effect on the sim-
ilarity scores in this specific case. On the other hand, the histograms for the
Jaro and Jaro-Winkler similarities are different from the other three, with the
Jaro algorithm showing some densities in the distribution at a lower similarity
score than the Jaro-Winkler algorithm. This would be due to the extra term in
the Jaro-Winkler algorithm creating a higher score for matching characters at
the start of strings. The Jaro and Jaro-Winkler similarity algorithms both show
data above the highest density of average scores, for which the explanation is
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Histograms of average Metaphone in-word similarities for ‘anahi’
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Figure 5.4: And image similar to that in figure 5.3. Each histogram is made for
the word ‘anahi’ with the Metaphone algorithm and using the different matching
algorithms up to a combination of two, as shown on the 𝑦-axis.

similar to the previous explanation of this phenomenon for figure 5.2b.
The figure also shows that the distributions of average scores stretch out

over different ranges, which is an indication of how the algorithm calculates a
score, but does not say anything about how well recordings may be matched
between recordings of different words.

The combinations of algorithms in figure 5.4 are averaged over the single
algorithms, which is clearly visible in the image. This averaging takes place
during matching with formula 4.6.

5.3 Cross-word comparison
From the in-word comparison in the previous section, results for cross-word
comparison are now discussed. Some of the following figures will have a seem-
ingly too small font on the 𝑥-axis due to showing words which otherwise do not
fit the axis well. In these cases, the words are always sorted in order from one
to ten.

5.3.1 1-to-1 comparison
As a first simple example of a cross-word comparison, and continuing with the
use of the Metaphone and Jaro algorithms from the previous section, figure 5.5
shows histograms of the comparison of one recording of a word to one recording
of each candidate word, after which the best match is chosen. The histogram
in figure 5.5a shows the probability of a correct match when the recording to
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be matched is sourced from the word on the 𝑥-axis, and the histogram in figure
5.5b shows the rate of indecision. To repeat, the rate of indecision is the number
of times no decision can be made before a decision is made. The results in the
figure have been retrieved using 10000 samples.

Matching one recording of a word to one recording of each word
using Metaphone and Jaro algorithms
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Figure 5.5: For matching one ‘unknown’ recording sampled from a word to
one recording of each candidate word, and then deciding which recording and
attached candidate word matches best with the given recording, the histogram
of the probability of a correct match is shown in the left plot, while the right
plot shows the rate of indecision for each word. Here the Metaphone and Jaro
algorithms are again used.

According figure 5.5a five out of the ten words match the correct word with
a chance on or above the 50%, which may be seen as low. The rate of indecision
is lower than 1, which means it is more likely a match is found than that an
indecision occurs.

With the simplicity of the 1-to-1 matching, probabilities and indecision rates
can be calculated for the various combinations of generalization and similarity
algorithms, for each word. The matching probabilities and indecision rates for
recordings of each word are then averaged over all words and the corrected using
formula 4.9 to take into account both the importance of a matching probability
and a low standard deviation of this probability. The corrected probabilities
and indecision rates are then combined using formula 4.10.

Figure 5.6 shows the corrected average values for the correct matching prob-
abilities and indecision rates, and their combined statistics, in respectively the
three figures from up to down. In the plot for the correct matching probabilities,
the color bar shows that the values are relatively close to each other. Of these
values, the NYSIIS algorithms seems to be giving relatively high probabilities
of matching correctly. The combination of NYSIIS and Metaphone also gives
high probabilities of matching.

When looking at the plot for corrected indecision rates in figure 5.6b, Soundex
shows the highest indecision rates for the single similarity algorithms. Overall
the spread of the corrected indecision values are between 0.3 and 1.5, which is
a relatively large spread. Those for NYSIIS and the combinations that include
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Averaged and corrected matching probabilities and indecision rates
and their combined statistic

soundex
nysiis

metaphone
sou., nys.
sou., met.
nys., met.

sou., nys., met.no
rm

. a
lg

s.

1.50

1.60

1.70

(a) The corrected average correct matching probabilities.
soundex

nysiis
metaphone

sou., nys.
sou., met.
nys., met.

sou., nys., met.no
rm

. a
lg

s.

0.50

1.00

1.50

(b) The corrected average indecision rates.

ha
m

m
in

g
le

ve
ns

ht
ei

n
da

m
er

au ja
ro

wi
nk

le
r

ha
m

., 
le

v.
ha

m
., 

da
m

.
ha

m
., 

ja
r.

ha
m

., 
wi

n.
le

v.,
 d

am
.

le
v.,

 ja
r.

le
v.,

 w
in

.
da

m
., 

ja
r.

da
m

., 
wi

n.
ja

r.,
 w

in
.

ha
m

., 
le

v.,
 d

am
.

ha
m

., 
le

v.,
 ja

r.
ha

m
., 

le
v.,

 w
in

.
ha

m
., 

da
m

., 
ja

r.
ha

m
., 

da
m

., 
wi

n.
ha

m
., 

ja
r.,

 w
in

.
le

v.,
 d

am
., 

ja
r.

le
v.,

 d
am

., 
wi

n.
le

v.,
 ja

r.,
 w

in
.

da
m

., 
ja

r.,
 w

in
.

ha
m

., 
le

v.,
 d

am
., 

ja
r.

ha
m

., 
le

v.,
 d

am
., 

wi
n.

ha
m

., 
le

v.,
 ja

r.,
 w

in
.

ha
m

., 
da

m
., 

ja
r.,

 w
in

.
le

v.,
 d

am
., 

ja
r.,

 w
in

.
ha

m
., 

le
v.,

 d
am

., 
ja

r.,
 w

in
.

similarity algorithms

soundex
nysiis

metaphone
sou., nys.
sou., met.
nys., met.

sou., nys., met.no
rm

. a
lg

s.

2.00

4.00
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Figure 5.6: This figure shows three plots from up to down for respectively the
corrected average correct matching probabilities for the combinations of algo-
rithms over the analysed words, the average indecision rates, and the combined
statistics of the two. The 𝑥-axis is the same for each figure and only shown
once.

NYSIIS show relatively low corrected indecision values compared to the other
combinations. However, the values for the combination of all three Soundex,
NYSIIS, and Metaphone shows the lowest indecision values. Further, when
taking into account the similarity algorithms, the Jaro-Winkler algorithm con-
sistently gives lower corrected indecision rates compared to other similarity al-
gorithms.

Finally looking at the statistic for the combination of the two types of al-
gorithms in figure 5.6c, the combinations of normalizing algorithms including
NYSIIS have high values. All three normalizing algorithms combined gives the
best results. The top values and their associated algorithms are shown in table
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5.3, which shows the combination of Soundex, NYSIIS, and Metaphone algo-
rithms with Damerau-Levenshtein, Jaro, and Jaro-Winkler similarity algorithms
has the best performance. Interestingly, the Jaro-Winkler similarity algorithm
(shown as ‘winkler’) is the one constant algorithm among those combinations
that have top ten scores.

Table 5.3: The top 10 values in the plots in figure 5.6c and the algorithms
represented by them.

Score Normalisation algorithms Matching algorithms
4.412 soundex, nysiis, metaphone damerau, jaro, winkler
4.390 soundex, nysiis, metaphone levenshtein, jaro, winkler
4.389 soundex, nysiis, metaphone winkler
4.377 soundex, nysiis, metaphone jaro, winkler
4.338 soundex, nysiis, metaphone hamming, jaro, winkler
4.326 soundex, nysiis, metaphone damerau, winkler
4.316 soundex, nysiis, metaphone levenshtein, damerau, jaro, winkler
4.314 soundex, nysiis, metaphone hamming, damerau, jaro, winkler
4.297 soundex, nysiis, metaphone levenshtein, winkler
4.294 soundex, nysiis, metaphone hamming, levenshtein, jaro, winkler
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Figure 5.7: The plot from figure 5.5 which used the Metaphone and Jaro algo-
rithms is recalculated using the combination of algorithms that was found to
perform best according to table 5.3.

By plotting and comparing the results in figure 5.5 again using the highest
scoring algorithms in figure 5.7, it can be seen that the probability for a correct
match goes down slightly with the best configuration from table compared to
using only the Metaphone and Jaro algorithms, with the exceptions that the
probability increases slightly for the words ‘yini’ and ‘anahi’. The probability
decreases significantly for the word ‘awɛi’. Comparing the rates of indecision
in figure 5.7b shows a very significant improvement. This is because the best
combination of algorithms was determined by a statistic combining both the
probability of a correct match and requiring a low rate of indecision. It can be
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argued that the decrease in rate of indecision compensates for the slight decrease
in correct matching probability.

From now on, the experiments continue with the best configuration from
table 5.3.

5.3.2 1-to-many comparison
Moving on from comparing with one recording of each candidate word, a com-
parison can be done with multiple recordings of candidate words. For example
if 𝑛 recordings are used from each word, and there are ten words, then a total
of 𝑛 ⋅ 10 recordings are compared to an unknown recording. Here, a number of
different ways of matching are possible as previously discussed.

Highest 𝑛 similarities
One method of matching is by requiring that a certain number of most similar
recordings to the unknown recording are of the same word before a match is
decided.

Histogram of probabilities and rates when requiring top 𝑛
similarities to be of the same word
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(b) Rate of indecision, log10 scale on the 𝑦-axis

Figure 5.8: This figure contains the plots of the probability of finding the correct
match and the rate of indecision when the most similar recordings are required
to be of the same word before a match is decided, for the top {1, 2, 3, 4, 5, 6}
similarities out of 6 recordings from each candidate word. For a comparison,
the case for using a single recording from each candidate is also included.

Figure 5.8a shows the probabilities when taking 6 recordings of each candi-
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date word, and requiring the top 1, 2, 3, 4, 5, or 6 similarity scores with the
unknown word to be of the same candidate word before deciding a match has
been found. For comparison, the case of using only a single recording from each
candidate word is added as well. The plot shows that there are different effects
of increasing the number of top matching recordings that need to be of the same
word. For all words, the probability to find a correct match initially goes up to
well above the “1 out of 1” bar. As the required top samples increases towards
6 however, the probability of matching goes down again, in some cases below
the “1 ouf of 1” bar.

An explanation for this is that there may be two effects at play here. The
first effect is that as the number of included recordings from candidate words
increases, the number of included variations increases. Since words are pro-
nounced slightly differently by different people from for example different com-
munities (with dialects for example), not all recordings are described with the
same phonetic string. As the number of used recordings per candidate word in-
creases, the chance of including different spoken versions increases as well. This
increases the chance that the version of the spoken unknown word is included
among one of the chosen recordings of each word.

The second effect that comes into play is that as the minimum number
increases of recordings with the highest similarity scores that need to be of
the same word, it becomes more difficult for a match to be found - after all
the top 𝑛 similar recordings need to be of the same word. Going back to the
example of the dialects, if two different dialects are included, and they both
need to have the highest similarity to the unknown words before a match is
found, then it becomes nearly impossible to find the correct match, as the given
unknown recording follows only one of the two included dialects. This causes
the chance to decrease of finding a match, and increases the chance for ‘noisy’
or bad recordings from other candidate recordings to be in between the top
similarity scores match. This would also cause the indecision rate to increase.

Looking at the plot for the indecision rates in figure 5.8b in log10 scale on
the 𝑦-axis, the second effect can be confirmed, as this plot clearly shows that it
becomes exponentially more difficult to match an unknown recording with one
of the candidate recordings, as the minimum number of required top similarities
increases to 6. The indecision rates increase to such high numbers, towards 100
retries, that this would not be usable in applications.

Highest similarities
The two described effects at play in the results in figure 5.8 represent a positive
and a negative effect. To explore only the first effect, an increasing number
of sample recordings can be taken of each candidate word, after which simply
the single most similar recording is taken as the best matching recording, after
which the word it represents is taken as the word representing the unknown
word.

The plots in figure 5.9 show the results of this experiment, the single most
similar recording to the given recording with unknown word is taken as the
matching recording, and this is done for an increasing selection of unique record-
ings per candidate word. The probabilities in figure 5.9a show an increase for
every word every time the number of used recordings is increased. For the
words with an initially lower matching probability, the probability increases
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Histogram of probabilities and rates when matching the most
similar recording
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(b) Rate of indecision, 𝑦-axis cut off at just above 0.3.

Figure 5.9: This figure shows a plot similar to that in figure 5.8, but for using
the most similar recording to decide which candidate word matches an ‘un-
known’ recording when {1, 2, 4, 8, 16, 32, 64} recordings are taken of each candi-
date word.

more strongly than for those that already have a ‘high’ probability. All prob-
abilities seem to move towards slightly above 0.6 or slightly above 0.8, after
which increases become minimal. This may be an effect of the noise, the data
set is not filtered and by listening to random recordings, a small but significant
fraction of them does not contain clearly spoken words.

Looking at the second plot for the rate of indecision in figure 5.9b, the rate
goes down on average for all words, the rate for ‘pia’ start out at nearly 0.3, and
moves down to below 0.03, nearly all rates move below 0.05 except for those for
‘anii’ and ‘ayɔbu’. However, there are words for which an increase is initially
visible, like ‘anahi’, ‘anu’ and ‘anii’. This may again be a case in which multiple
effects are at play.

The idea behind these effects is that for any recording, there will be many
imperfectly matching recordings, and only few perfectly matching recordings.
Or in other words, the chance is higher to get an imperfectly matching record-
ing than a perfectly matching one. Since the words ‘anahi’, ‘anu’ and ‘anii’ are
phonetically very close together, imperfectly matching recordings are more likely
to be similar between the words. As the number of included words to choose
between increases, the likelihood becomes higher that at least one imperfectly
matching recording is included for a word. This then increases the chance of an
indecision to happen. If a perfectly matching recording were to be included, a
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match would happen with this recording and no indecision would happen. As
the number of included recordings increases, the chance for a perfectly matching
recording to be included also goes up, but lacks behind the chance of inclusion
of an imperfectly matching recording. However, at some point the chance is at
such height that it starts outperforming the factor related to imperfectly match-
ing recordings, and then with each increase in number of included recordings,
the indecision rate goes down as it becomes more likely a perfectly matching
recording is included.

Mathematically, the previous paragraph can be explained as follows. The
chance of a recording of a certain type to be included is defined as 𝑟. The
chance of this type of recording to not be included when 𝑛 recording are chosen
is (1 − 𝑟)𝑛, and thus the chance of at least one recording of this type to be
included given 𝑛 chosen characters is 1 − (1 − 𝑟)𝑛. Now take two types of
recordings, for example the type of perfectly matching recordings, and that of
imperfectly matching recordings, and define their chances of being included as
respectively 𝑠 and 𝑡. The ratio of how much more likely it is for one type to be
included over another type is then defined as 1−(1−𝑠)𝑛

1−(1−𝑡)𝑛 . As 𝑛 increases, the ratio
becomes closer to 1, or also written as

lim
𝑛→∞

(1 − (1 − 𝑠)𝑛

1 − (1 − 𝑡)𝑛 ) = 1, (5.1)

where it does not matter if 𝑠 > 𝑡 or 𝑠 < 𝑡, as long as {𝑠, 𝑡} ≤ 1. This means that
as the number of included recordings 𝑛 to choose from grows, the chances of
either type of recording to be included becomes closer. In the case an imperfectly
matching recording is included, this may cause an indecision, while an included
perfectly matching recording will almost always prevent an indecision. This
means that including a perfectly matching recording is more consequential than
including an imperfectly matching recording, which creates a point at which 𝑛
is high enough, so that the probabilities for including at least one of either types
are close enough, for the effect of the perfectly matching recording to become
more noticeable than that of the imperfectly matching recording. This effect
can be seen in the plot in graph 5.9b.

Filtering noise
An explanation for the apparent ceiling in correct matching probability in figure
5.9a at around 0.8 is that noise prevents more correct matches from being found.
This can be tested.

Some filtering of noise is possible by looking at the in-word similarities plot-
ted in figure 5.3. If the average similarity of one recording to the other record-
ings of the same word is low, then that would mean that the recording has little
overlap in phonetic structure to the other recordings, which could indicate it is
a noisy recording. By selecting only the recordings that have a high average
similarity to other recordings, the noisy recordings can technically be filtered
out.

To do this in a very rough way, the upper 50% of the recordings with highest
average similarity score can be taken, the algorithm used for the plots in figure
5.9 can be run on this selection of recordings. Note that this method of filtering
noise is too rough to be used in applications, and is in this case only used to
test the idea around the impact of noise.
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Comparison of probabilities and rates of filtered and unfiltered data
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Figure 5.10: This figure shows the experiment from figure 5.9 for filtered data
compared to unfiltered data. The plot for the probabilities shows the light
colored probabilities for filtered data with those for unfiltered data more clearly
on top. The second plot shows the ratio of the rates of indecision with the rate
of filtered data over the rate of unfiltered data.

Figure 5.10 shows the results. In the top figure 5.10a, the probability of
correctly matching are shown for the filtered and unfiltered data, and figure
5.10b shows the ratio of indecision rates, with the indecision rate of the fil-
tered data divided by that of the unfiltered data. The top figure shows that
probabilities of correctly matching become better with filtered data in all cases,
with probabilities maxing out at nearly 100% for some words. Interestingly, for
the word ‘anu’, the probability for a correct match eventually decreases slightly
when more sampled recordings are included from each candidate words. It is
not entirely clear why. It is clear however that overall, the rough filtering of
data gives higher probabilities, which indicates the negative significance of noise
on correctly matching, and shows that without noise the probabilities can go to
nearly 100%.

The bottom figure 5.10b shows the rate of indecision for filtered data is
lower for the cases that have a ratio below one, but the rate is higher when the
ratio is shown as being above one. For the words ‘anahi’, ‘anu’, ‘ayɔbu’, and
‘anii’ the rate of indecision is higher at low numbers of included samples from
candidate words. A reason for this may be the similarity between words. The
words ‘anahi’, ‘anu’, and ‘anii’ all start with ‘an[...]’, which makes them similar,
especially when the Jaro-Winkler similarity algorithm is used. The reason for
the ratio between the indecision rates being above 1 is likely related to the same
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effects described in the text explaining figure 5.9b, but in a different way, with
a ratio involving different probabilities for imperfectly matching and perfectly
matching recordings.

Overall there is a correct matching probability of 0.77 ± 0.09 for unfiltered
data with an indecision rate of 0.030 ± 0.015, while for rough filtered data this
is 0.90 ± 0.09 and 0.007 ± 0.011 respectively.

Most similarities in top 𝑛
The strategy behind the results in figure 5.8 is to only accept a match if the top
similar recordings are all of the same word. This can be seen as very strict. To
relax this, instead of requiring the top similarities to all be of the same candidate
word, the most represented candidate word in a certain number of most similar
recordings can be chosen as the word belonging with the unknown recording

Histograms of probabilities and rates when best word of 𝑛 top
similarities is matched
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Figure 5.11: This figure shows plots similar to those in figure 5.9, but for using
the most similar {1, 2, 4, 8, 16, 32} recordings to decide which candidate word
matches an unknown recording when 8 recordings of each candidate word are
chosen. The word that is most represented within the top similar recordings is
the word that is chosen to match the given recording of an unknown word.

Results for this experiment for the correct matching probabilities and inde-
cision rates are seen in figure 5.11. The possibly confusing legend require an
explanation. For example “16 out of 8” means that from each candidate word
8 recordings were randomly picked, leading to a total of 80 recordings. Then
from the most similar 16 recordings to the unknown recording, the candidate
word from which the most recordings were in this selection of 16 was chosen as
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the word representing the given unknown recording.
The results show that this relaxed version of the results in figure 5.8 does

not perform well either, with the probability of correctly matching going down
as the number of used best similarities goes up. Similarly the rate of indecision
goes up. Which means that both statistics get worse. Compared to the results
in figure 5.8, the probabilities in this experiment go down more strongly, while
the indecision rate goes up much less. The rate goes up less fast because the
relaxation of the rule in figure 5.8 allows for some (noisy) recordings of other
words to show up in the top 𝑛 similarities without preventing a match from
being found. At the same time, the effect that caused an initial increase in
probability in figure 5.8 seems to be less strong here. Oddly, the indecision
rates for “2 out of 8” are surprisingly high compared to other values. For this,
similar effects may be at play as those in figure 5.8, but with each effect having
a different impact.

Comparing single and 𝑛 best similarities
Figure 5.8 showed the chance of correctly matching when the 𝑛 recordings with
the best similarity scores all need to be of the same candidate word. It showed
that as 𝑛 (out of 6) increased, the probability of a correct match increases, before
going down, while the indecision rate increases exponentially in all cases of
increasing 𝑛. The result in figure 5.9 showed a significantly improved situation.
Combining the result from figures 5.8 and 5.9, there may be a case ‘in the
middle’, which gives the best results.

To test this, an increasing number of recordings of each candidate word have
been taken, with 1 to 5 of the top similarities having to be of the same word
before a match is decided. This means that if 15 recordings of each candidate
word are used, a total of 150 recordings are used for 10 words. A single recording
is then taken, which is of course not in the 150 recordings, and the similarity
with each of the 150 recordings is calculated. The best 𝑛 similarities are then
taken and if these are all of the same word, a match is found.

Statistic for matching correctly using various top similarities
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Figure 5.12: This figure shows the values of the statistic of formula 4.10 for cor-
rected average correct matching probabilities and indecision rates for requiring
the top 1 to 5 similarity scores to be for the same candidate word, out of 1 to
32 recordings of each candidate word, before a match is decided.

The plot in figure 5.12 is created for 1 to 32 recordings of each word, and
requiring the top 1 to 5 similarities to be the same word. The numbers in the
plot are calculated in the same way as those in figure 5.6c. The plot shows that
using only the single most similar recording to decide on a match performs the
best over all others for all numbers of included recordings per candidate word.
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As the number of used recordings increases, the results become better, which is
similar to what was seen in figure 5.9.

Plot of probabilities and rates using most similar recording as match
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Figure 5.13: This figure shows the plot of correct matching probability on the
left and indecision rate on the right for taking the most similar recording from
the candidate words as the one matching the unknown recording. This is the
top row in figure 5.12.

To confirm the relation between the probabilities and rates, and the number
of recordings taken from each candidate, while using only the most similar
recording to match an unknown word, the plots in figure 5.13 have been created.
With the 𝑥-axis on a logarithmic scale, it can be seen that relation for both
the rates and probabilities is roughly linear with the logarithm of the number
of included recordings per word. This indicates that the more recordings are
included in the comparison, the higher the correct matching probabilities and
the lower the indecision rate, but that the positive effects of including more
recordings goes down as more are included.
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Chapter 6

Conclusion

This thesis attempted to contribute towards solving the problem with matching
spoken words from rare languages from which not enough material is available
to train a full neural network solution. It attempted to do this for words in
Dagbani for one to ten, by using three steps:

1. creating a phonetic transcription of a recording,
2. generalizing this transcription using one or a combination of

• Soundex,
• NYSIIS, or
• Metaphone, and

3. matching the generalized strings using calculated similarities with one or
a combination of
• the Hamming distance,
• the Levenshtein distance,
• the Damerau-Levenshtein distance,
• the Jaro similarity, or
• the Jaro-Winkler similarity.

These three steps could be combined in many ways, leading to a high-
dimensional problem, which was explored by changing one variable at a time,
and changing parameters for next experiment using results from previous ex-
periments.

The combination of generalization algorithms Soundex, NYSIIS, and Meta-
phone with the similarity algorithms Damerau-Levenshtein, Jaro, and Jaro-
Winkler gave the best results when it comes to a combination of correct match-
ing probabilities and indecision rates.

The results were the best for simply taking the candidate word behind the
recording most similar to the unknown recording, and using that word as the
word spoken in the unknown recording. This was confirmed using 64 sampled
recordings from each candidate word. For the used Dagbani words, the proba-
bility of a correct match is 0.77 ± 0.09 and the indecision rate is 0.030 ± 0.015
for unfiltered data, and respectively 0.90 ± 0.09 and 0.007 ± 0.011 for rough
filtered data. The result in figure 5.13 show that the probabilities and rates
move further into the right directions as more sample recordings are included
from candidate words.
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It is very likely that these results hold for combinations of other words as
well, especially as those words are often more detailed and contrastive to each
other than the words for the letters 1 to 10 used in the experiments, leading
to greater differences in phonetic transcription and thus likely higher correct
matching probabilities and lower indecision rates. Further, this would not only
hold for the Dagbani language, but for any language that phonetically overlaps
with the language of the acoustic model, in this case English.

These results contribute to performing automatic speech recognition on rare
language. The methods are are suitable for use in low-resource environments
due to their energy-efficient way of working with recordings of speech. With
this, the thesis attempts to improve the adoption of technologies in these envi-
ronments, as it opens up paths towards speech-based applications suitable for
low-resource languages, which will help with development in the areas in which
these languages are used.
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Chapter 7

Discussion

The results from the experiments in this thesis are promising. Several aspects
need to be kept in mind however when building further on these results.

There is a random component to these results. This means that in the
situations in which numbers are very close to each other, like in table 5.3,
this randomness might have a significant effect that could change results upon
rerunning experiments. However to minimize this risk, when samples where
taken that included randomness, a total of 10000 samples have been taken for
each calculated result.

A neural network was used in these experiments. A major downside from
neural networks is the lack of ability to explain results. Artificial neural net-
works consist of a very large number of nodes (million of even billions of nodes)
which perform an equally or even larger number of calculations. When training,
the weights and biases in the nodes are gradually adjusted to improve output
towards what is expected. While this happens, the network implicitly finds pat-
terns and discovers concepts that it uses during calculations. However, these
discovered patterns and concepts are not clearly communicated in the end re-
sults. Therefore the network starts acting as a bit of a ‘black box’ [153], to
which data is given, then “calculations happen”, and output is given which usu-
ally comes close to what is expected. While the network used in this report
seems to give reasonable output on average, there is a chance that the network
gives very unexpected output in specific cases, which could lead to very negative
effects in user experience. While useful, for these reasons, there can be trust
issues around neural networks [46].

The words used in the experiment have been limited to the Dagbani words
for one to ten, and the words for yes and no in some initial experiments. There
are many more words in the language for which experiments have not been
conducted. The reasonable expectation is that results would be equally good
for other words in either Dagbani or other languages, and perhaps even better
since other words are likely more contrastive than those in these experiment.

For the correction and combination of correct matching probabilities and
indecision rates, formulas were created. While these formulas have reasoning
behind them that explain the decisions made in their design, there may be
alternatives that are better suited for the task, and may improve the results.
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7.1 Further research and implementations
Next to the experiments done in this thesis, a lot more can be experimented
with. Either closely related to the goal of this thesis, or to somewhat different
goals. The theories are also very promising for future implementations. The
following sections contain ideas and what may be possible with further research
and implementations, however it should be noted that these ideas are untested,
and may not work out as implied in these sections.

7.1.1 Personalization
Words from the same language are not always spoken the same, due to dialects
and accents, as was also explained in section 4.1. This means that when match-
ing a word spoken, there is a chance it will not match well due to this. This
problem can be greatly reduced or even solved.

An idea is to perform personalized matching. This means matching words
spoken by one person against words spoken by that same person. This ensures
that any differences in how the person pronounces words compared to others
are accounted for by their own personalized data set.

How this may work in practice is as follows. If a user communicates with
some implementation, the implementation needs to be able to understand words
initially. In the beginning there may be a relatively low but noticeable indecision
rate or probability of matching a wrong word. An implementation would check
this with the user, for example by repeating the word said and then pronouncing
a version of the word that was understood. The user can then either speak the
word again or agree that it was correctly interpreted.

If the word is correctly interpreted, it is added to a separate ‘group’. This
group lives next to the groups the implementation starts out with. For example,
in the case of a word for ‘house’ and a word for ‘tree’, the implementation starts
out with a two groups - one for each word. When the user correctly matches a
word, a new group is created for that word, in which from then on the correct
matches are stored. This means that after some use four groups exist. The two
initial groups for ‘house’ and ‘tree’, and the two groups containing only correctly
matched recordings for those same words ‘house’ and ‘tree’.

Matching can then happen in three ways. The first way is that all four
groups are kept in use by the implementation. Whenever a recording is given,
it is matched to all four groups and the most likely group is chosen. In this
case there are two groups of each word to choose from, where the personalized
group is assumed to be matching better. Since the recordings will match with
a higher similarity to the personalized groups, those two groups will be largely
at play, while the initial other two groups can be seen as a ‘fallback’.

A second way of using this is by deciding on a moment to switch over com-
pletely to the personalized groups, effectively discarding the two initial groups.
This method has two upsides to the first method. The first upside is that any
noise from the initial groups is not attempted to be matched with anymore, and
can therefore not interfere with the results. Secondly, different dialects or ways
in which words are pronounced are taken into account with the personalized
group and can be handled, which can be especially interesting for people that
have speech disabilities. A downside is that the matching is then optimized to
the person it was personalized for, or people who speak in exactly the same way,
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so correctly matching with how other people speak the words may become more
difficult. If someone else is to speak, the implementation could switch back to
also using the two original groups, but this may be difficult to automate.

Finally, something in the middle can be used. That is to match first with
the two personalized groups. If the similarity score is above a certain threshold
for either of these groups, a decision for a match is made. If the similarity score
is lower than the threshold, the recording is matched again with this time all
four groups, and a decision is made on the best match. This has as upside that
any noise from the two initial groups will not interfere with the personalized
matches, and in the case of someone else speaking, a switch can be made to the
original two groups.

To test these ideas, experiments need to be conducted in the field, which can
best be done with all three discussed variants. It is also especially interesting
to conduct this experiment with users of different dialect of the same language.
Afterwards the personalized groups can be matched against each other, and the
different dialects should be clearly visible through the similarity scores.

7.1.2 Clustering
The in-word similarity distributions in the plot in figure 5.3 and the discussion
around it explained that there seem to be three major explanations for the
distribution of the average similarity scores:

1. In the case of a single clear density of high average similarity scores, the
word is clearly defined with a single pronunciation, causing the one clear
density in the distribution.

2. In the case of roughly two high densities of average similarity scores around
0.5, there are likely two pronunciations the word at play, which both match
themselves, and not the other, leading to an average similarity score of near
0.5. And, for example in the case of three high densities at around 0.3,
this may be the case of three versions of the spoken word.

3. In the case of a more spread out distribution, there may be some spectrum
of ways in which the word can be spoken, or a lot of noise is present in
the recordings - more than in recordings from other words. A reason for
this could be that the phonetic data extracted from the recordings is not
detailed, and a lot of information is lost, leading to noise having a higher
impact on the similarity scores.

These three explanations create the idea of clustering average similarities
together. By doing this, it may be possible to separate out the different ways
of pronouncing a word. This allows for two important uses. The first is from a
perspective of linguistics. It may allow for a kind of automatic segmentation of
dialects [48], [183], which could help with problems in speech recognition [45] or
incentivize future research in this. The second use is in matching words. If the
different pronunciations can be clearly separated from each other, they may be
put in separate groups of recordings, possibly allowing for more accurate match-
ing of a spoken word. It may also allow for a different type of personalization
than discussed in section 7.1.1. When enough words are matched, the imple-
mentation may decide which cluster best fits the pronunciations of the user and
continue matching against only this cluster for a certain word.
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7.1.3 Searching sentences
The output from the network includes probabilities for the characters # and |.
Here, | represents a break between words. Since this thesis focuses on matching
words, these characters are simply removed. This means that if multiple words
are spoken, they are concatenated together.

By not concatenating the words together, but rather splitting the results
from the network into multiple words using the | character, technically multiple
words can be recognized and matched in spoken sentences. For example, one
might speak a sentence from which multiple words are identified. Then with
another set of spoken words, this sentence can be searched. Using this, a search
index can be created from larger spoken texts, which can then be searched with
spoken words.

It is unclear at the moment how reliable predictions for the | characters are,
but it is reasonable to assume that a high probability can be assigned up to
the same level in which the probabilities for alphanumerical characters can be
trusted. Further, the research done in this thesis was done on only a small set
of words. Given enough contrast between different words, a very large set of
words may be supported, but to which extend is not clear at the moment. This
means that very long recordings of speech may run into the problem of having
too many words, which could greatly decrease the accuracy of predictions.

7.1.4 Data filtering
In the thesis, a very rough approach was taken to filtering of the data set, done
for a simple and rough comparison to test an idea. This filtering was done using
the in-word matches, by simply taking the top 50% of recordings for each word
that had the highest average similarity scores to the other recordings of the
same word.

To reiterate, the idea is that valid recordings - meaning recordings that are
not noisy - are very similar to each other. While recordings with a high amount
of noise, or recordings that do not contain the word at all, do not have many
recordings similar to them. With this in mind, the recordings with the highest
similarity scores are likely those with the least noise - or the most ‘correct’
recordings. By selecting these recordings, the invalid recordings are effectively
filtered out.

The approach taken here was to simply take the top 50%. However, this is
too rough, and either keeps a lot of noisy recordings in, or takes too many valid
recordings out. More research should be done on how to best filter recordings.
An idea could be to use a clustering approach similar to that in section 7.1.2,
but this time to find the clusters of recordings that are most likely valid, and
filter the set of recordings based on that.

7.1.5 Port to PyTorch
For this thesis, the Flashlight library [82] is used for the model to create a
phonetic transcription of recordings of speech. Flashlight is not very well known
and may be difficult to get used to, especially as it is written in C++ instead of
the more popular [157], [169] Python. The most popular library for Python to
run and develop neural networks with is PyTorch. Porting the neural network to
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PyTorch would allow for only Python to be used, and may increase participating
in this project as more people would be able to understand and work with the
network itself. Do note that the major part of the implementation is written in
Python, only the first step is not, that of using the network.

7.1.6 Fine-tuning the network
A network was used that outputs probabilities for an English phonetic descrip-
tion of audio. A downside of this is that the network will likely only give good
results for the phonetic characteristics of the rare language that overlap with the
English language. This causes significant information that may get lost during
the processing. Fine-tuning the network may help in these cases.

There are various ways in which artificial neural networks can be fine-tuned.
The idea behind fine-tuning [105], [123] is that the network has already reached
the ability to find patterns to match sounds with. With fine-tuning, this already
learned information would be slightly altered or adapted for a new model to
allow for better handling of slightly different input data. This can only be done
if the data on which fine-tuning happens is sufficiently close in input features to
the data the network was originally trained on, and the new expected output is
close as well, so that the network is not required to learn entirely new concepts.

Three methods that can be looked into are mentioned here. First of all, the
entire network can be trained from the state it currently has [99], [102]. The
number of output nodes cannot be changed in this case, which means that there
are only 29 output nodes available from the network to infer the probabilities for
characters with. The characters represented by these 29 nodes may be changed
to the characters that are most frequently used in the rare language. After fine-
tuning, the 29 nodes should represent the majority of the English characters
overlapping with the rare language, and the few characters in the rare language
that are not found in the English language.

A second method of fine-tuning is by altering the network, while keeping
large parts of the network unchanged [180], using for example REFT [188].
Another example is fine-tuning only the top layer in a network [7], [152], the
last layer in the network used here is a linear network with 384 input nodes
and 29 output nodes. This means the 384 input nodes contain all information
needed to construct the values for the 29 output nodes. This layer can be
removed and replaced by one or a few new layers, where the first layer also
has 384 input nodes, but where the last layer has a number of output nodes
equal to the number of characters in the other language. Retraining would
then happen with only the last newly added layers, and the rest of the network
would not be retrained. This has the upside that it is cheaper as there are fewer
nodes to perform backpropagation for, and it has the upside that the number
of output nodes can be changed. The downside however is the assumption is
that all information required to construct probabilities for the rare language are
encoded in the 384 nodes coming from the first part of the network, which may
be not entirely the case, since there may be phonemes in the rare language that
do not exist at all in the English language, and for that reason are not encoded
in the 384 input nodes either.

A third method of fine-tuning is by constructing a second network next to
the trained network using PEFT methods [98], [189] like LoRA [67]. The trained
network forms the ‘main’ part of calculations, while the second network would
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be intertwined with the trained network, to ‘guide’ the calculations into certain
directions so they are better suited for the rare languages. This method may be
combined with the second method for better results.

7.1.7 Other acoustic models
The probabilities for the characters inferred by the acoustic models are normal-
ized and matched using algorithms that are designed for the English language.
Languages that are phonetically close to English are very well supported by this
approach. However there are many languages that are not phonetically close to
English.

Other languages can be looked into, like French. Due to the history of French
on the African continent and other locations around the world, many languages
are phonetically close to French [106]. Using English acoustic models for these
languages would likely not yield good results. Using French acoustic models
would, although this is not investigated in this thesis.

For further projects it would be interesting to look into acoustic models
other than English, and see how this performs on matching between samples of
various languages. This could be automated in some way - some experiments in
this thesis can be repeated for each available acoustic model, and the acoustic
model that matches best is taken for further use with this language.

This could be further automated in applications. Allowing people to speak
a completely arbitrary language, then automatically identifying which acoustic
model produces the best results with this language, and continue using this
acoustic model from then on. Alternatively, multiple acoustic models could
be used, in the same way that the use of multiple normalization and matching
algorithms is done in this thesis. For example, if a language phonetically overlaps
with both English and French, it may be interesting to use acoustic models for
both languages, and use results from both to decide on a match.

7.1.8 Large Language Models
With the introduction of GPT-1 [131] and GPT-2 [132], the rise of the large lan-
guage models was started [115]. Subsequent models showed emergent behaviors
[181] to various degrees. Behaviors are said to be emergent in neural networks
when they do not appear in smaller networks, but seem to somewhat ‘sponta-
neously’ appear in larger networks. Examples are the sudden appearance of the
ability to unscramble words, or the appearance of the ability to perform various
levels of arithmetic tasks [155].

In the theories around languages in section 1.1, the concept that each lan-
guage is an abstract way of representing the same kind of information is dis-
cussed. As large language models grow and become multi-modal [5], [54], [120],
[121], they are able to handle not only text, but also audio and video as input.
These multimodal large language models may at some point show emergent be-
havior that shows they understand this underlying theory behind languages -
the theory that binds different languages together. This may allow the network
to very quickly adapt itself to understand languages from which only very little
data is available, which may allow for rare languages to be understood up to
the level in which popular languages can be understood.
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Appendix A

Sample application

A simple application of the theory was implemented using pyTelegramBotAPI
[47] for the Telegram API [166]. It allows for recordings to be registered under
a certain string and for recordings to be matched to an earlier registered record-
ings. For using the source code of the application, please see the information in
section B.1 and attachment A.

Recordings can be made and registered by typing /new, after which a string
representing the incoming recordings should be typed and submitted, and then
one or more recordings to register with that string. A confirmation then follows,
after which another string and recording can be given.

To switch to the interpretation mode, /interpret needs to be typed, after
which recordings can be submitted, and the bot replies with the string that
matches the recording best. When command /new is submitted again, the
application removes context and starts over.

Figure A.1 shows two screenshots of the bot. On the left is a screenshot of
registering of strings and recordings with the /new command, and on the right
is a screenshot of the interpretation mode with /interpret, in which recordings
can be given to be matched. The words registered are in the Dutch language.

The bot is available under the name audio-indexer, and can be added to
groups on Telegram. An effort will be made to keep the bot online for at least
a year after finishing of this thesis. This is a very simple example, and is only
meant as example to try out language matching. It does not allow for multiple
recordings to be registered per word.
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Screenshots of the sample application

Figure A.1: A simple application of the theory in the form of a Telegram bot
using the Telegram API. The screenshot on the left shows registering new words
after typing the command /new, and the screenshot on the right shows the
interpretation phase after typing command /interpret.
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Appendix B

Source code

Source code for the implementation, the experiments and the application in
appendix A is made available and explained here.

B.1 Package
To make the ideas and results from this thesis usable in other applications, the
source code is published16 [148]. This code contains a Python package, C++
code, and a Dockerfile for building and running various parts.

B.1.1 Flashlight
For the experiments a trained neural network was used to infer probabilities for
characters over time steps of audio, which is loaded using Flashlight [82] and
compiled C++ code. The trained models come in two sizes and are available
[97] with a size of 70 million parameters17 and a size of 300 million parameters18,
where the model with 70 million parameters was used in this thesis, as the work
is aimed at people and organisation with lower resources, and so less expensive
models are more favorable to run. The currently actively developed Flashlight
version is version 0.4.0 and has a problem with loading the models [81], so

16Repository on Github: https://github.com/W4RA/speechmatching
17Network with 70 million parameters at URL https://dl.fbaipublicfiles.com/

wav2letter/rasr/tutorial/am_transformer_ctc_stride3_letters_70Mparams.bin (archived
at URL https://web.archive.org/web/20230603172217/https://dl.fbaipublicfiles.
com/wav2letter/rasr/tutorial/am_transformer_ctc_stride3_letters_70Mparams.bin)
with network structure defined at URL https://dl.fbaipublicfiles.com/wav2letter/
rasr/tutorial/am_transformer_ctc_stride3_letters_70Mparams.arch (archived at
URL https://web.archive.org/web/20230603180553/https://dl.fbaipublicfiles.com/
wav2letter/rasr/tutorial/am_transformer_ctc_stride3_letters_70Mparams.arch).

18Network with 300 million parameters at URL https://dl.fbaipublicfiles.
com/wav2letter/rasr/tutorial/am_transformer_ctc_stride3_letters_300Mparams.bin
(archived at URL https://web.archive.org/web/20220729100332id_/https://dl.
fbaipublicfiles.com/wav2letter/rasr/tutorial/am_transformer_ctc_stride3_letters_
300Mparams.bin) with network strcture defined at URL https://dl.fbaipublicfiles.
com/wav2letter/rasr/tutorial/am_transformer_ctc_stride3_letters_300Mparams.arch
(archived at URL https://web.archive.org/web/20230523044211/https://dl.
fbaipublicfiles.com/wav2letter/rasr/tutorial/am_transformer_ctc_stride3_letters_
300Mparams.arch.
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version 0.3.119 is used instead. Next to the model, a list of tokens is required.
This list is static for the pre-trained models and can be downloaded as well20

The required version of Flashlight is relatively difficult to compile, as it
requires certain versions of packages. While these version could be compiled
and stored in the /opt directory, the decision was made to have these in a
Docker image. The repository contains a Dockerfile, which will install the
required versions, build the C++ code to run the models using Flashlight, and
install the Python package using pip. The compiled binary file stored is then
available from /opt/bin/acoustic, and models are downloaded to the default
location in the container ~/.cache/acoustic. The Docker image is available
online for pulling under name aukesch/speechmatching.

Please see the README in the documentation in attachment A for details
on how to run this with Docker.

B.1.2 Running
As the software required to run this is compiled in a Docker image, this Docker
image is involved in running the code. Two ways are available in which the code
can be run. The first is using Docker alone, meaning that software written to
use the speechmatching package is run in a Docker container as well.

The second method is by running the Python code locally, with the Docker
container on the side, which the Python code will communicate with. For the
second method to run well, it is important to make sure the Docker image with
the acoustic binary is pulled from aukesch/speechmatching or built under
name speechmatching, else it cannot be automatically found.

Please see the documentation in attachment A for more details, especially
the first chapter and the examples.

B.2 Experiments and application
The experiments were in written in an IPython Notebook, and are included in
the repository on Github as one of the examples. The application shown in
appendix A is also available in the repository as an example. Instruction for
how to run and use either of these are in the documentation in attachment A.

19Flashlight v0.3.1: https://github.com/flashlight/flashlight/releases/tag/v0.3.1.
20The tokens.txt file at URL https://dl.fbaipublicfiles.com/wav2letter/rasr/

tutorial/tokens.txt (archived at URL https://web.archive.org/web/20220729100540/
https://dl.fbaipublicfiles.com/wav2letter/rasr/tutorial/tokens.txt).
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Attachment A

Speech Matching
documentation

Following on the next pages is the documentation of the ‘speechmatching’ soft-
ware. This is compiled using the documentation also available in the repository,
see appendix B.
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CHAPTER

ONE

README

The speechmatching package allows for calculating similarity scores between short audio fragments containing
speech. It then uses these similarity scores to find matches over multiple groups of recordings.

This is especially useful for rare languages from which not enough data exists to train a fully capable ASR model, or
when the resources for training such a model are not available.

This package, along with the acoustic binary was created in combination with the thesis on Speech Matching [thesis]
by Auke Schuringa for the University of Amsterdam and the Vrije Universiteit in the Netherlands.

Warning

This project does not currently run on machines with the ARM64 architecture due to the intel-mkl library not
supporting this.

1.1 Setup

The repository is made up of two parts. The first is the speechmatching package itself, and the second is the acoustic
binary located in the acoustic/ directory.

For details on setting up the acoustic package, please see its documentation. Because the acoustic package has
specific dependencies and can be somewhat complex to build, it is recommended to run it using Docker.

The speechmatching Python package will by default look for the aukesch/speechmatching Docker image locally,
and attempt to pull it if not available. For this, Docker needs to be installed.

Get Docker by installing it:

curl https://get.docker.com/ | sudo sh

Then, grant permissions to the current user so Docker can be run without sudo:

sudo groupadd docker
sudo usermod -aG docker $USER
newgrp docker

The speechmatching package requires ffmpeg for converting files with an audio stream to a usable format. Using
apt, this can be installed with:

sudo apt-get update
sudo apt-get install ffmpeg
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Finally, install the speechmatching package from PyPI [package]:

pip install speechmatching

Or from the cloned repository:

pip install .

Optionally, create a virtual environment first:

sudo apt-get install python3-venv
python3 -m venv env
source env/bin/activate
pip install .

1.1.1 Development

During development, it may be useful to have a separate Docker image that is not named aukesch/speechmatching,
which can then contain changes made during development. To support this, the speechmatching package will look
for a Docker image named speechmatching before it looks for the Docker image aukesch/speechmatching. If the
first docker image is available, the image under aukesch/ will not be used.

1.2 Usage

There are two ways to use the speechmatching package - either locally or from within Docker.

1.2.1 Local

Running locally requires the (automatically pulled) Docker image containing the acoustic binary. This image sets the
environment variable ACOUSTIC_RUNNING_IN_DOCKER=1, which is not available when running outside the container.

When running speechmatching and an audio file needs to be processed, the package detects that it is not running in
Docker, then attempts to start a container from the speechmatching or aukesch/speechmatching Docker image
(and attempt to pull it if it is not available locally). It will communicate with this container to process the audio file.
When the program stops, the package tries to stop and remove the created container.

In other words, all that is needed is for Docker to be installed and set up correctly, and then the package can be run
normally. These steps were explained in the previous section.

Warning

Upon stopping or closing the program, one may see a note about “cleaning up.” If this process is aborted, the Docker
container may continue running even after the Python process closes.

If that happens, the container can be manually identified and stopped:

docker ps

Copy the CONTAINER ID of the container in question, then stop and remove it with:

docker stop CONTAINER_ID
docker rm CONTAINER_ID

1.2. Usage 2
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1.2.2 Docker

Alternatively, the speechmatching package can be run entirely inside Docker. In this scenario, the package detects that
the ACOUSTIC_RUNNING_IN_DOCKER=1 environment variable is present and attempts to interact with the acoustic
binary locally within the same container.

To do this, include a Dockerfile in the directory of the code with a structure like:

FROM aukesch/speechmatching
COPY . .
# more code...
CMD ["python3", "main.py"]

After which the Docker image can be built and run.

1.2.3 Example

Most of the functions that are needed to run this on a basic level are in the speechmatching.recording submodule.

In the following example, we assume the user has several audio files:

./audio/speech1.mp3

./audio/speech2.3gp

./audio/speech3.wav

./audio/house1.mp3

./audio/house2.mp4

./audio/tree1.3gp

./audio/tree2.mp4

./audio/tree3.mp3

./audio/tree4.wav

./audio/unknown.mp3

The last file in this list is named unknown.mp3, and it is believed this audio file belongs to one of the three spoken
words speech, house, or tree, for which we have several samples available.

A single recording can be loaded and analyzed:

>>> from speechmatching.recording import Recording

>>> # load the recording
>>> speech1 = Recording('./audio/speech1.mp3')

>>> # get the transcript
>>> transcript = speech1.transcript

>>> # print the most likely text
>>> print(transcript.text)

>>> # print the top likely texts
>>> print(transcript.probable_texts())

>>> # and calculate similarity scores to other recordings
>>> speech2 = Recording('./audio/speech2.3gp')
>>> print(speech2.similarity(speech1))

(continues on next page)
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(continued from previous page)

>>> # same as
>>> print(speech2.transcript.similarity(speech1.transcript))

These samples are sorted into groups:

>>> from speechmatching.recording import Group, Recording

>>> groups = [
... Group(
... identifier='speech',
... recordings=[
... Recording('./audio/speech1.mp3'),
... Recording('./audio/speech2.3gp'),
... Recording('./audio/speech3.wav')
... ]
... ),
... Group(
... identifier='house',
... recordings=[
... Recording('./audio/house1.mp3'),
... Recording('./audio/house2.mp4')
... ]
... ),
... Group(
... identifier='tree',
... recordings=[
... Recording('./audio/tree1.3gp'),
... Recording('./audio/tree2.mp4'),
... Recording('./audio/tree3.mp3'),
... Recording('./audio/tree4.wav')
... ]
... )
... ]

>>> # load the unknown recording and match it
>>> unknown = Recording('./audio/unknown.mp3')
>>> match = unknown.match(groups)
>>> print(match.identifier)
>>> # best matching group is printed here

There are more possibilities, with much greater control over the process by using various arguments available to the
functions around normalization of strings, calculating similarity scores, and strategies for finding the best matching
group.

Using the function .match(...) of the Recording instance uses the combination of normalization and matching
algorithms that was found to work best in the thesis for which this software was written.

More examples can be found in the examples/ directory.

1.2. Usage 4
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1.3 Sample implementations

1.3.1 Basic

This basic example downloads a zip file [zipfile] with directories of recordings, unpacks this in the current directory,
and peforms various operations with the sound recordings.

In “basic example 1”, basic loading, transcript calculation, and similarity score calculation is done. In “basic exam-
ple 2”, a small number of three groups of recordings are created, with each having between 2 and 4 recordings. A
final recording is then separately loaded and matched with the three groups to see which group matches the unknown
recording best.

Finally, in “basic example 3”, all downloaded recordings are loaded from their directories. One group is created per
directory, and all recordings from that directory are added to that group.

A group is then taken to be tested with, and 20 random chosen recordings from this group are matched with all groups,
after which the best matching group is chosen as matching group, or no decision can be made.

Please see the code in example.py for comments on how this works.

Note

When processing the audio files in the downloaded recordings.zip file, they are also processed by the acoustic
binary to have information extracted from them. This may take some time.

Setup

The basic example of how to use the speechmatching package can be run through either Docker, or locally (manually).

Manual

It is advised to create a virtual environment using in a directory env/:

python3 -m venv env

and to load this with:

source env/bin/activate

In the virtual environments (which you have activated two commands ago), install the speechmatching package.
From the two directories up with:

(cd ../..; pip install .)

and make sure that the acoustic binary is already built and available using instructions in the main README of this
repository.

All requirements from requirements.txt need to be installed:

pip install -r requirements.txt

And one should then be all set to run the script with:
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python3 main.py

Docker

Alternatively, Docker can be used, for which a Dockerfile is available.

Build the image using:

docker build . -t speechmatching-basic

After this completes successfully, run the image using:

docker run --rm -it speechmatching-basic

1.3.2 Telegram bot

This is a simple example of a Telegram bot. The bot can receive text and voice message to create groups of recordings,
and can receive voice messages to match against these groups to find the best matching group.

The message expected by the bot depends on the state it is in. There are three states:

• Text state: the bot expects a text as representation of a word that is about to be registered. After receiving this
word, the bot will move to the next state in this list.

• Recording registration state: the bot expects a voice message to register with the previously given textual repre-
sentation of it. One or more recording may be given after each other. If instead of a recording, a text message is
received, the bot will abandon the previous word if no recordings were registered to it, or keep it, and move to
the “text state”.

• Interpretation state: the bot expects a voice message to match against the previously registered recordings.

The commands to move between the states are as follows:

• \new: remove all recordings and switch to the text state.

• \interpret: move from the text or recording registration state to the interpretation state.

Setup

For the Telegram bot, one needs to get a token from Telegram for which the guide [telegramguide] can be followed.
When this token is available, change the name of file env.list.CHANGEME to env.list, and replace dummy token
123456789:abcdefghijklmnopqrstuvwxyzABCDEFGH by the token from Telegram.

When the token is in place, the bot can be run manually or using Docker.
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Manual

Please see the manual setup in the README for the Basic example. The setup for the Telegram bot requires one
extra step, setting the environment variable from env.list. Right after loading the Python virtual environment using
source env/bin/activate, the Telegram bot token can be loaded into the environment with:

set -a
source env.list
set +a

After which the instructions from the setup for the Basic example are the same and can be followed further.

Docker

As for the Basic example, the Telegram bot can also be run using Docker.

Build the image for the Telegram bot under name speechmatching-bot:

docker build . -t speechmatching-bot

After this completes successfully, run the image using:

docker run --rm --env-file env.list -it speechmatching-bot

where the previously filled in env.list file is used.

1.3.3 Experiments

This example contains the IPython Notebook final.ipynb, which has the code for the experiments and plots for the
thesis for which speechmatching was originally written. The Notebook may be not well organized and does not
contain very clear notes and descriptions.

Setup

After setting up the speechmatching package and the acoustic binary, install the dependencies from
requirements.txt and run:

jupyter notebook

after which the final.ipynb file can be opened, and experimented with.

1.3. Sample implementations 7



CHAPTER

TWO

SPEECHMATCHING PACKAGE

2.1 Submodules

The speechmatching package contains various submodules. Of these submodules, usually only the submodule
speechmatching.recording should be used. This submodule contains the functions for loading directories, and
creating and handling Group, Recording, and Transcript instances.

2.1.1 speechmatching.audio module

Functions to prepare an audio or video file or raw transcript.

For processing, an audio file is expected of a WAV format with a single channel and a rate of 16kHz, which is what the
function in this module creates.

speechmatching.audio.format_audio(input_filepath, output_filepath=None, overwrite=True)
Convert an audio or video file to a WAV file with 1 channel and 16 kHz.

After conversion, the new audio file is stored on disk for reuse next time. The filename of the created WAV file
is the input filepath with _processed.wav appended to it.

Examples

>>> format_audio('example.mp4')
'example.mp4_processed.wav'
>>> format_audio('example2.mp3')
'example2.mp3_processed.wav'

Parameters

• input_filepath (str) – The audio or video file to convert.

• output_filepath (str | None) – A filepath ending with .wav to store the result in. If
this is not given, the input_filepath has _processed.wav appended to it and is used
instead.

• overwrite (bool | None) – Whether to overwrite the output file or not. Has default value
True.

Returns
The filepath to which the created WAV file was written.

Raises
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• ValueError – If the output filepath does not end in .wav.

• ffmpeg.Error – in case of an error by ffmpeg.

• FileNotFoundError – If the input file was not found, or the output file was not created.

Return type
str

2.1.2 speechmatching.config module

Module containing global configuration for Docker and local based models.

class speechmatching.config.Config

Bases: object

The configuration around interaction with the acoustic binary.

MODEL_DOCKER_IMAGE

The name(s) of the docker images with the acoustic binary to use. By default these are either:

• speechmatching: A locally build docker image to be used.

• aukesch/speechmatching: The docker image on docker.com,
which can also be pulled.

MODEL_DOCKER_BIN_LOCATION

The file path within the Docker container where the acoustic binary can be found.

CACHE_DIR_LOCAL

The directory path on the local machine used to store the models for the acoustic binary if not running
with Docker.

CACHE_DIR_DOCKER

The directory in the container used to store the models when using Docker for transcribing.

CACHE_DIR_DOCKER = '/root/.cache/acoustic'

CACHE_DIR_LOCAL = '/home/uni/.cache/acoustic'

MODEL_DOCKER_BIN_LOCATION = '/opt/bin/acoustic'

MODEL_DOCKER_IMAGE = ['speechmatching', 'aukesch/speechmatching']

2.1.3 speechmatching.match module

Module containing the functions for calculating matching scores.

The functions help with creating the algorithms for normalization or matching of strings, and combinations of the two.

speechmatching.match.ensure_algs_dict(norm_algs, match_algs)
Create a dictionary of normalization and matching algorithms.

Please see the documentation of the ensure_norm_algs_dict() function for how a representation of normal-
ization algorithms is processed.

The matching of audio files is performed using the results from the normalization algorithms. To construct the
dictionary that describes how these matches are done, the normalization algorithm needs to be available.

2.1. Submodules 9
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Examples

>>> norm_algs = {'metaphone': 0.25, 'nysiis': 0.7499999999999999}
>>> ensure_algs_dict(norm_algs, 'hamming')[1]
{'metaphone': {'hamming': 1.0}, 'nysiis': {'hamming': 1.0}}
>>> ensure_algs_dict(norm_algs, ['hamming', 'jaro'])[1]
{'metaphone': {'hamming': 0.5, 'jaro': 0.5}, 'nysiis': {'hamming': 0.5, 'jaro': 0.5}
→˓}
>>> ensure_algs_dict(norm_algs, {'hamming': 0.1, 'jaro': 0.5})[1]
{'metaphone': {'hamming': 0.16666666666666669, 'jaro': 0.8333333333333334}, 'nysiis
→˓': {'hamming': 0.16666666666666669, 'jaro': 0.8333333333333334}}
>>> ensure_algs_dict(norm_algs, {'metaphone': {'hamming': 0.1, 'jaro': 0.3}, 'nysiis
→˓': {'levenshtein': 0.1, 'jaro': 0.2}})[1]
{'metaphone': {'hamming': 0.25, 'jaro': 0.7499999999999999}, 'nysiis': {'levenshtein
→˓': 0.3333333333333333, 'jaro': 0.6666666666666666}}

Parameters

• norm_algs (str | List[str] | Tuple[str, ...] | Dict[str, float]) – The
representation of normalization algorithms.

• match_algs (str | List[str] | Tuple[str, ...] | Dict[str, float] |
Dict[str, str | List[str] | Tuple[str, ...] | Dict[str, float]]) – The
representation of matching algorithms.

Returns
A tuple of the dictionary of normalization algorithms, and the dictionary of matching algorithms,
where the dictionary of the matching algorithms has used information from the dictionary of
normalization algorithms.

Return type
Tuple[Dict[str, float], Dict[str, float] | Dict[str, Dict[str, float]]]

speechmatching.match.ensure_norm_algs_dict(norm_algs)
Format the representation of a normalization algorithm dictionary.

The given input is a representation of a dictionary describing the normalization algorithms and their factors in a
final result.

Examples

>>> ensure_norm_algs_dict('metaphone')
{'metaphone': 1.0}
>>> ensure_norm_algs_dict(['soundex', 'metaphone'])
{'soundex': 0.5, 'metaphone': 0.5}
>>> ensure_norm_algs_dict({'soundex': 0, 'metaphone': 0.1, 'nysiis': 0.3})
{'soundex': 0.0, 'metaphone': 0.25, 'nysiis': 0.75}

Parameters
norm_algs (str | List[str] | Tuple[str, ...] | Dict[str, float]) – The rep-
resentation to make into a dictionary of normalization algorithms.

Returns
The dictionary of normalization algorithms and their factors with sum up to 1.
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Raises
TypeError – If norm_algs is not a string, list, tuple, or dict.

Return type
Dict[str, float]

speechmatching.match.find_name(name, return_f=True)
Find the function in the the jellyfish [jellyfish] module based on the name.

This function is cached.

The name for the functions and their function name in jellyfish are mapped as follows:

{
"soundex": "soundex",
"nysiis": "nysiis",
"metaphone": "metaphone",
"hamming": "hamming_distance",
"levenshtein": "levenshtein_distance",
"damerau": "damerau_levenshtein_distance",
"jaro": "jaro_similarity",
"winkler": "jaro_winkler_similarity"

}

Parameters

• name (str) – The name to map against and find the jellyfish function for.

• return_f (bool) – Whether to return the found callable, or the string of the name of the
function in jellyfish.

Returns
The jellyfish function if return_f is True, or the name of the function.

Raises
ValueError – If the given name of an algorithm is not found, if multiple algorithms are found
for a certain name, or if the name of an algorithm could not be matched for a given name.

Return type
str | Callable[[str, str], float] | Callable[[str], str]

speechmatching.match.match(normed1, normed2, match_algs)
Calculate a matching score between two strings.

The strings are expected to be normalized, however this is not strictly necessary. This function will not further
normalize the given strings.

Parameters

• normed1 (str) – The first string to compare.

• normed2 (str) – The second string to compare to the first string normed1.

• match_algs (Tuple[Tuple[str, float]]) – The matching algorithms to use and the
factor with which they should count in the final result. An example of a correct value is:

(
('hamming', 0.3),
('winkler', 0.5)

)
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which notes that both the Hamming distance and the Jaro-Winkler similarities should be
used, and the returned list of values will have the respective scores be multiplied by factors
of respectively 0.3 and 0.5.

If a distance function is given, we convert the result into a similarity score using
similarity_score=1-(distance_score/max_length)

Returns
A list of values of the result of match between the two given strings and each method with their
factor.

Return type
List[float]

speechmatching.match.normalize(s, name=None)
Normalize a string with a certain algorithm.

This function is cached.

The names for the algorithms that are supported are:

• soundex for the Soundex algorithm

• nysiis for the NYSIIS algorithm

• metaphone for the Metaphone algorithm

Parameters

• s (str) – The string to normalize.

• name (str | None) – The name of the function to use. If not given, the string s is simply
returned.

Returns
The normalized string s or the string itself when no name of the algorithm to use was given.

Return type
str

2.1.4 speechmatching.model module

Functions and classes for interacting with the acoustic binary.

The acoustic binary is responsible for transcribing audio data into text by using a neural network. Objects here allow
for downloading these models, caching them locally or for Docker usage, and running the binary either locally or inside
a Docker container.

class speechmatching.model.DockerModel(*args, pull_image=True, **kwargs)
Bases: Model

A model that runs the acoustic binary in a Docker container.

This model communicates with a container of the Docker image under (normally) name aukesch/
speechmatching or speechmatching. The model starts the container, interacts with it, and stops it when
asked to.

This is the model that should be used when the acoustic binary and its libraries have not been compiled locally,
but are only available through Docker, and the software using the speechmatching package does not run in
Docker.

Parameters
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• pull_image (bool) – Whether to pull the aukesch/speechmatchingDocker image when
a local image or this one is not found.

• *args – See the initialization arguments of Model.

• **kwargs – See the initialization arguments of Model.

_abc_impl = <_abc._abc_data object>

_alive_checker(container, interval=2)
Continuously check if the container is still alive.

If the container is not alive anymore, the logs of the container are printed to the LOGS_FILEPATH global
variable filepath, and the program is exited with exit code 1.

Parameters

• container (dict) – The container to be checked.

• interval (int) – The interval in seconds with which should be checked, default is 2.

property _client: APIClient

Create the Docker API client for managing containers.

Returns
A docker.APIClient instance.

Raises
Exception – If the client could not be started, which is an indication that Docker is not
installed. Or, if the Docker could not be used due to permission problems.

property _container: dict

Starts the container containing the acoustic binary.

The container is started with the command to start the acoustic binary and let it wait for input over
standard input for audio files to transcribe.

Returns
Information about the container created by the client.

property _container_stdout: SocketIO

The socket for standard output from the running container.

Returns
The socket to the container to read information from.

property _container_stdout_lines: Iterator[str]

Iterator over lines from the standard output socket.

Yields
A line read from standard output from the container.

_copy_file(src_filepath, dst_dirpath)
Copy a file from the host to the container.

After copying, the file becomes available in the container and to the acoustic binary for further processing.
However, the binary still needs to be sent the message that it should process the copied file.

If a file already exists at the location the local file will be copied to, this file will be overwritten.

Parameters

• src_filepath (str) – Path to the file on the host machine.
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• dst_dirpath (str) – Path to copy the file from src_filepath to on the container.

Returns
The location in the container the file has been copied to.

Return type
str

property _image: str

Find or pull the image to use for the acoustic binary.

The names for the Docker images listed in speechmatching.config.Config are checked in order, and
if one is found to exist, it is returned.

If no images are found to exist, the first image name containing / is pulled if pull_image was not set to
False on initialization of this class. After pulling, the name of the pulled Docker image is returned.

Returns
An existing Docker image.

Raises
Exception – If no Docker image could be found and no Docker image should be pulled
because pull_image was set to False, or if no Docker image name could be found that can
be pulled.

property _socket: SocketIO

The socket for standard input to the running container.

Returns
The socket to the container to write information to.

_stop_client()

Stop the Docker communication client.

_stop_container()

Stop and remove the running container gracefully.

_stop_socket()

Close the sockets to the container.

read()

Read a line from the container over standard output.

Returns
A single line of output.

Return type
str

read_result(filepath=None)
Read output from the transcribing container.

The file written by the acoustic binary is copied into the host machine and then read, and is not being
read directly from the container.

Parameters
filepath (str | None) – The filepath to read from. This is by default the default file the
acoustic binary writes results to in the container, which is defined in the speechmatching.
config.Config class.

Returns
The result from the model after processing an audio file.
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Raises
ValueError – If the file copied from the container is somehow not found.

Return type
str

start()

Start the container and create a socket for writing to it.

stop()

Stop the sockets, container and Docker client.

write(message)
Write a message to the container over standard input.

Parameters
message (str) – The message to write.

class speechmatching.model.LocalModel(*args, acoustic_location=None, **kwargs)
Bases: Model

A model that runs the acoustic binary locally on the host machine.

This model can be used when the acoustic binary and the required libraries have been compiled and are avail-
able locally. This is the case when this code is run in Docker with the compiled binary, or when effort has been
put in to compile the binary locally outside of Docker.

When not running in Docker from the aukesch/speechmatching image, this model should likely not be used,
and the DockerModel should be used instead.

Upon initialization of an instance, the required files for transcribing are downloaded if not downloaded yet.

Parameters

• acoustic_location (Optional[str]) – Optional. This is the location of the acoustic
binary if this is different from one of the expected locations.

• *args – See the initialization arguments of Model.

• **kwargs – See the initialization arguments of Model.

_abc_impl = <_abc._abc_data object>

property _process

Create the process for transcribing.

If the location of the acousticmodel was not given upon initialization of the instance, an attempt is made
to locate the binary in one of the following locations:

• /opt/bin/acoustic

• /usr/local/bin/acoustic

• acoustic (in the local directory)

If the binary is found, the process is started and waits for input over standard input for files to transcribe.

Returns
A subprocess.Popen instance that communicates with the acoustic binary over standard
input and output.

Raises
Exception – In case the binary is not found.
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read()

Read a line from the process over standard output.

Returns
A single stripped line of output.

Return type
str

read_result(filepath=None)
Read output from the transcribing process.

Parameters
filepath (str | None) – The filepath to read from. This is by default the default file
the acoustic binary writes results to, which is defined in the speechmatching.config.
Config class.

Returns
A line of output from standard output.

Return type
str

start()

Start the model by creating the process to transcribe with.

stop()

Stop the model by terminating the running process.

write(message)
Write a message to the process over standard input.

Parameters
message (str) – The message to write.

class speechmatching.model.Model(model_size='70M')
Bases: ABC

Abstract base class representing a model for transcribing audio.

Parameters
model_size (str) – The model size to use. Either 70M or 300M. See documentation for function
download_files() for more information.

PROCESSES: List[Model] = []

_abc_impl = <_abc._abc_data object>

abstract read()

abstract read_result(filepath)

Parameters
filepath (str)

Return type
str
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classmethod record_process(instance)
Add a running model to keep track of.

It is important to keep track of the instances of the model that are in use in order to stop these instances
when the program closes.

Parameters
instance (Model) – The model to register.

abstract start()

abstract stop()

abstract write(message)

Parameters
message (str)

class speechmatching.model.Transcriptor(model_location=None)
Bases: object

The transcriptor for guiding the transcribing process.

Parameters
model_location (Optional[str]) – The model to use, can have either value local, or
value docker. If not set, the value will be attempted to be determined by looking for the
ACOUSTIC_RUNNING_IN_DOCKER environment variable set by the aukesch/speechmatching
or speechmatching Docker images, if one of them is being used.

_transcribe(input_filepath)
Run the process described in function Transcriptor.transcribe() in this class.

Parameters
input_filepath (str)

Return type
str

stop()

Stop the model.

transcribe(input_filepath)
Transcribe an audio or video file using the running model.

This process can only run once at a time for each running instance of the model.

The given audio or video file is first processed into a WAV file of a single channel and 16000 hertz. If
the Docker container is running, the file is copied into the running container. The file is then processed
using the running acoustic binary, and the result is retrieved when the signal is given that processing has
finished. This signal is given by writing on standard output from the process in the Docker container.

Parameters
input_filepath (str) – The audio or video file to process.

Returns
The raw output from the transcribing process in the form described in the documentation of
class speechmatching.recording.Transcript.

Return type
str
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speechmatching.model.download_files(model_size='70M', overwrite=False)
Download the tokens URL [tokens] and a certain model URL to the cache dir.

The model is either one of 70 million [70model] or 300 million [300model] parameters.

These files are required as input to the acoustic binary to transcribe an audio file to characters and their prob-
abilities.

Parameters

• model_size (str) – The model to download. This can be either 70M or 300M. The default
value is 70M.

• overwrite (bool) – Whether to overwrite an existing file or not.

Raises
AssertionError – If the HTTP response code is not 200 or if the hash digest of the downloaded
file does not match the expected digest.

speechmatching.model.get_cache_filepath(location, make_dir=True, docker=False)
Get the filepath for a URL or file in the cache dir.

The default cache dir can be found in the speechmatching.config.Config class.

Parameters

• location (str) – The URL or file for which to construct the cache filepath.

• make_dir (bool) – Make the target directory if it does not exist. By default valued True.

• docker (bool) – Whether to use the cache dir in the Docker environment, or in the local
environment. By default set to False, which means the local environment is used.

Returns
A string representing the full path to the cached file. For URLs, only the filename portion (after
the last “/”) is used in the cache path.

Return type
str

speechmatching.model.stop()

Stop all running models, both local and in Docker containers.

This method is registered to be automatically called when the signal is given to stop. It will use the processes
stored in the global class variable in the Model class to determine which processes are running and need to be
stopped.

This function may take several seconds to complete.

Warning

If this process is stopped before it finishes, and a Docker container was used for transcribing, the container
may not be stopped correctly and it needs to be stopped manually.
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2.1.5 speechmatching.recording module

The functions and classes around storing, processing and handling audio.

These are the main objects that are likely used when using package speechmatching in code. Please see the README
for instruction on how to use this, and have a look at the examples.

class speechmatching.recording.Group(identifier=None, labels=None, recordings=None)
Bases: object

A group to hold Recordings.

Parameters

• identifier (Optional[str]) – The identifier of the group, which should be unique. It is
not required.

• labels (Optional[Dict[str, str]]) – The labels of the group. This could for example
be names or translations:

{
"English": "Three",
"Dagbani": "Ata"

}

An empty dictionary is used if nothing is given.

• recordings (Optional[List[Recording]]) – The list Recordings to initially load. If
nothing is given, the group is initialized empty.

add(recording)
Add a Recording.

Parameters
recording (Recording) – The Recording to add under the identifier set in the Recording
itself.

Returns
True if the recording was successfully added, or False if the identifier from the given record-
ing is already in this group.

Return type
bool

group(size=None, identifier=None)
Create a new Group from this Group.

Parameters

• size (int | None) – The number of random Recordings from this Group to use. This
is by default set to the number of Recordings currently in this Group.

• identifier (str | None) – The identifier for the new Group. This is by default set to
the identifier of the current Group with _sub appended to it.

Returns
The new Group of given size and with given identifier.

Return type
Group
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property identifier: str | None

The identifier of the Group.

label(k)
Get a label from the group.

Parameters
k (str) – The key of the label.

Returns
The label under key k.

Return type
str | None

random()

Return a single random Recording.

Return type
Recording

recording(identifier)
Get the Recording under a certain identifier.

Parameters
identifier (str) – The identifier of the Recording.

Returns
The Recording under label identifier.

Return type
Recording

recordings()

Return a list of all Recordings in this Group.

Return type
List[Recording]

remove(recording)
Remove a recording from the Group.

Parameters
recording (Recording | str) – The identifier to the Recording, or the Recording itself
that should be removed from this Group.

Raises
ValueError – If the recording does not exist in this group.

sample(k=1)
A number of randomly picked unique recordings from the Group.

Parameters
k (int) – The number of Recordings to get. The default value is 1.

Returns
The list of k randomly picked unique Recordings.

Return type
List[Recording]
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set_label(k, v)
Set or replace a label.

Parameters

• k (str) – The key of the label.

• v (str) – The value of the label.

class speechmatching.recording.Recording(filepath, transcriptor=None, preload=True, identifier=None,
raw_output_filepath=None)

Bases: object

Representation of an audio recording and various processing tasks.

Parameters

• filepath (str) – The path to the audio file.

• transcriptor (Optional[Transcriptor]) – The speechmatching.model.
Transcriptor to use for the transcribing the recording. This is optional. If not
given, a global one is created and used.

• preload (bool) – Whether the audio file should be processed upon initialization of this
class. This may significantly increase the time required for initializing the class, but prevents
this processing time from happening later. True by default.

• identifier (Optional[str]) – The identifier of the Recording instance. This identifier
can be used in the Group the recording is in to allow for looking up the Recording. If not
given, this will be set to filepath.

• raw_output_filepath (Optional[str]) – The filepath to which the raw output of the
audio file given by the speechmatching.model.Transcriptor will be written. If not
given, this is set to the audio filepath with _raw_output.txt appended to it.

GLOBAL_TRANSCRIPTOR = None

property filepath: str

The filepath of the audio file.

classmethod get_global_transcriptor()

Create and/or return the created global speechmatching.model.Transcriptor.

Returns
The global speechmatching.model.Transcriptor.

Return type
Transcriptor

property identifier: str

The identifier of the current Recording instance.

match(groups, size=9223372036854775807, use_min_group_size=False, algs_norm=['soundex', 'nysiis',
'metaphone'], algs_match=['damerau', 'jaro', 'winkler'], return_indecision=True, *args, **kwargs)

Match the current Recording with multiple Groups.

Matching of one recording with multiple groups will allow for a single group, multiple groups, or no groups
to be found to match the recording depending on the given arguments, see the descriptions of the parameters
for more information on this.

The normalization and matching algorithms used here are by default set to the values that were found to
work best according to the thesis for which this software was written.
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Examples

>>> group1 = Group(identifier="Group1", recordings=[rec2])
>>> group2 = Group(identifier="Group2", recordings=[rec3, rec4])
>>> rec1.match([group1, group2], size=1)
Group(identifier='Group2', ...)

Parameters

• groups (List[Group]) – The groups to match this recording against.

• size (int) – The number of recordings from each group to use for matching. If a group
has fewer recordings than this size, then argument use_min_group_size decides how
many recordings of each group will be used.

• use_min_group_size (bool) – If set to True, then if one of the groups has fewer than
size recordings, size is readjusted to the size of this group so an equal number of record-
ings from each group is used.

• algs_norm (str | List[str] | Tuple[str, ...] | Dict[str, float]) – See
the documentation for the Transcript.similarity() function. Here, the default value
is set to:

['soundex', 'nysiis', 'metaphone']

• algs_match (str | List[str] | Tuple[str, ...] | Dict[str, float] |
Dict[str, str | List[str] | Tuple[str, ...] | Dict[str, float]]) –
See the documentation for the Transcript.similarity() function. Here, the default
value is set to:

['damerau', 'jaro', 'winkler']

• return_indecision (bool) – Whether to return None if there are multiple groups that
match the recording with the same similarity. When this happens, a decision cannot be
made for a single group. If this argument is set to False, all matched groups are returned
instead.

• *args – Arguments for the similarity() function.

• **kwargs – Arguments for the similarity() function.

Returns
One of the given groups is returned if this group was found to be a best match to the record-
ing. Multiple groups are returned if argument return_indecision is False, and multiple
groups match the recording equally well. None is returned if multiple groups match equally
well and return_indecision is set to True.

Return type
None | Group | List[Group]

similarity(others, *args, **kwargs)
Calculate similarity scores between this and other Recordings.
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Examples

>>> rec1 = Recording('audio1.wav')
>>> rec2 = Recording('audio2.wav')
>>> rec1.similarity(rec2, algs_norm='metaphone', algs_match='jaro')
0.85
>>> rec3 = Recording('audio3.wav')
>>> rec4 = Recording('audio4.wav')
>>> rec1.similarity([rec2, rec3, rec4], algs_norm='metaphone', algs_match='jaro
→˓')
[0.85, 0.3, 0.91]

Parameters

• others (Recording | List[Recording]) – The other recording to calculate a similar-
ity to, or a list of multiple other recordings.

• *args – Arguments for the Transcript.similarity() function of the Transcript
instance for this current Recording.

• **kwargs – Arguments for the Transcript.similarity() function of the Transcript
instance for this current Recording.

Returns
A single similarity score if one Recording was given, or a list of scores if multiple
Recordings were given.

Return type
float | List[float]

property transcript: Transcript

Get the Transcript of this recording.

The recording is transcribed with the speechmatching.model.Transcriptor, which may be a global
one, as detailed earlier in this class. If the file in which the raw output would be stored exists, it is loaded
and no new transcript is created. If it does not exist, it is created after transcribing.

Returns
The transcript of the Recording.

class speechmatching.recording.Transcript(raw)
Bases: object

The handling of raw output for a transcript.

The raw transcript is in a form as shown the description of the raw variable below, and usually comes from the
speechmatching.model.Transcriptor used in the Recording class.

This class performs various operations on the raw data, like extracting probable texts, and calculating matching
scores with different transcripts.

Parameters
raw (str) – The string with multiple lines for the probabilities of the characters in the transcript.
The first line in the string should note the characters, and each subsequent line represents the
probabilities of these characters for the specific time step. This is formatted as:

char1 char2 char3 [...] charx
prob1 prob2 prob3 [...] probx

(continues on next page)
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(continued from previous page)

[...] (time steps)
prob1 prob2 prob3 [...] probx

for which an example is:

a b c [...] z
0.1 0.3 0.05 [...] 0.01
[...]
0.01 0.8 0.1 [...] 0.001

property probabilities: ndarray[Any, dtype[_ScalarType_co]]

Create the list of lists of probabilities per time step.

The first line of the raw input is left out of the returned data, and only the probabilities are included from
the raw data.

Returns
The matrix of probabilities with the time step on the y-axis and the character probability on
the x-axis.

probable_texts(min_probability=0.2, cache=True, normalize=True, or_best=False, or_best_char=False)
Calculate probable texts from the raw data and their probabilities.

The raw data given to the instance has probabilities at each time step for given characters. With these
probabilities, probable texts or strings of characters can be calculated. This can be done by taking all
characters in each time step with a probability above the minimum probability and combining these into
multiple strings.

It can happen that multiple characters in a time step have a sufficient probability, in which case multiple
string are calculated. As an example, if there are three time steps, where time step one has 1 character of
sufficient probability, time step two has 3, and time step three has 2 such characters, then a total of 1·3·2 = 6
texts will be calculated.

It can happen that none of the characters in a time step have a sufficient probability, in which case what
happens can be controlled using the arguments or_best and or_best_char.

If or_best and or_best_char are both set to False, it is possible for a single empty string to be returned
in the dictionary.

Parameters

• min_probability (float) – The minimum probability for a token to be considered. Has
a default value of 0.2.

• cache (bool) – Use the cache to store the result for the given set of arguments, or to retrieve
the result from there and return it.

• normalize (bool) – Normalize the probabilities for the returned texts to 1.

• or_best (bool) – If no text could be extracted due to all character not exceeding the
minimum probability, simply take the most likely text, which is the text return by the text
property of the instance.

• or_best_char (bool) – if no character for a time step could be selected due to none of
them exceeding the minimum probability, use the character from the time step with the
highest probability.

Returns

The most likely texts according to the given arguments in the form of a dictionary:
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{
"TEXTA": 0.3,
"TEXTB": 0.2,
"TEXTC": 0.5

}

where the probabilities add up to 1 if normalize is set to True.

Return type
Dict[str, float]

similarity(others, algs_norm=['soundex', 'nysiis', 'metaphone'], algs_match=['damerau', 'jaro', 'winkler'],
choose_best=False, min_probability=None, or_best=True, or_best_char=False)

Calculate similarity scores over one or more other Transcripts.

These similarity scores are calculated by first normalizing texts taken from these transcripts, and then cal-
culating a similarity score for each of them using the matching algorithms, and factors for how much they
should count in the final result.

Please also see the description in the function probable_texts() of this class to read how the used
probable texts are calculated.

Parameters

• others (Transcript | List[Transcript]) – The other transcripts to calculate a sim-
ilarity score with.

• algs_norm (str | List[str] | Tuple[str, ...] | Dict[str, float]) – The
algorithms to normalize the texts with before calculating similarity scores. The normal-
ization algorithms are a representation of what should happen, which may include factors
when combining algorithms. Possible algorithms are

– soundex for the Soundex algorithm [soundex]

– nysiis for the NYSIIS algorithm [nysiis]

– metaphone for the Metaphone algorithm [metaphone]

and these can be combined in the following ways

– one normalization algorithm can be given as:

algs_norm = 'soundex'

– multiple normalization algorithms can be given as:

algs_norm = ['soundex', 'nysiis']

– and factors can be given which do not need to add up to 1:

algs_norm = {'soundex': 0.1, 'nysiis': 0.5}

The best performing combination of normalization algorithms and matching algorithms,
according to the report, is used by default. For the normalization algorithms this is:

['soundex', 'nysiis', 'metaphone']

• algs_match (str | List[str] | Tuple[str, ...] | Dict[str, float] |
Dict[str, str | List[str] | Tuple[str, ...] | Dict[str, float]])
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– The algorithms to use for calculating the actual similarities between strings after
normalization using the algorithms in algs_norm. The possible algorithms are

– hamming for the Hamming distance (as a similarity) [hamming]

– levenshtein for the Levenshtein distance [levenshtein]

– damerau for the Damerau-Levenshtein distance [damerau]

– jaro for the Jaro similarity [jaro]

– winkler for the Jaro-Winkler similarity [winkler]

and these can again be combined, in the way in which they can be similarly combined for
the algs_norm argument as:

algs_match = 'hamming'
algs_match = ['hamming', 'jaro']
algs_match = {'hamming': 0.1, 'jaro': 0.5}

and additionally as a dictionary taking the normalization algorithms into account as:

algs_match = {
'metaphone': {'hamming': 0.1, 'jaro': 0.3},
'nysiis': {'levenshtein': 0.1, 'jaro': 0.2}

}

Here, again the best performing combinations are used by default, which for the matching
algorithms is:

['damerau', 'jaro', 'winkler']

• choose_best (bool) – If multiple probable texts for a single recording are used in the
calculation of the similarity score, this argument determines if the total similarity score
should be averaged, or if simply the higest similarity scores should be chosen. The default
is False, meaning that the final similarity score is averaged over all used probable texts.

• min_probability (float | None) – Used in the probable_texts() function, see the
documentation there.

• or_best (bool) – Used in the probable_texts() function, see the documentation there.

• or_best_char (bool) – Used in the probable_texts() function, see the documentation
there.

Returns
A single similarity score if only a single transcript was given, or a list of similarity scores
with one score for each of the given transcripts in order.

Return type
float | List[float]

property text: str

Calculate the text with most probable character in each time step.

After calculation of the raw string, it is still processed with the speechmatching.utils.
process_string_alnum() function before being returned. The characters are uppercased before return-
ing.

Returns
The most probable text by selecting the most likely token at each time step.
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property tokens: List[str]

The list of characters in the raw data in order.

Returns
The characters in the first line of the raw data in the same order they have in this first line.

speechmatching.recording.load_directory(directory, transcriptor=None, identifier=None, labels=None,
return_empty=False, verbose=True)

Create a Group with all audio files in a directory.

Any audio files ending with _processed.wav in the directory will be ignored, as this is the filename ending
used for audio files that have been converted into the format used by the acoustic binary for transcribing.

Parameters

• directory (str) – The directory from which load the audio files.

• transcriptor (Transcriptor | None) – The speechmatching.model.
Transcriptor to use for transcribing. If not given, a global one will be used.

• identifier (str | None) – The identifier of the new Group. If not set, the name of the
directory will be used instead.

• labels (Dict[str, str] | None) – A dictionary of the labels to set.

• return_empty (bool) – If set to True, an empty Group is created if the directory contains
no audio files. Default is False.

• verbose (bool) – Whether to output the progress of loading files. Default is True.

Returns
The Group with loaded audio files, or None if no audio files were found, and return_empty is
False.

Return type
Group | None

speechmatching.recording.load_directory_groups(directory, transcriptor=None, return_empty=False)
Load multiple Groups of Recordings from a directory.

The given directory should contain multiple directories which each containing the audio files for a Group. If
a directory does not contain audio files, it may be ignored depending on the return_empty argument.

If a <directory>_metadata.json file is present in the directory next to the directory containing Recordings
for the Group, the identifier and labels from this JSON file will be adopted for the new Group, else default values
documented in the arguments of this function will be used.

The <directory>_metadata.json is of format JSON and can hold one of the keys identifier and label,
with label being a dictionary with strings as keys and values. An example is:

{
"identifier": "mygroup",
"labels": {

"en": "my group",
"nl": "mijn groep"

}
}

Parameters
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• directory (str) – The directory from which directories of audio files are loaded into
Groups.

• transcriptor (Transcriptor | None) – The speechmatching.model.
Transcriptor to use for the processing the audio files. If not given, a global one
will be used.

• return_empty (bool) – Whether to create an empty Group if a subdirectory does not con-
tain any audio files.

Returns
A dictionary of the created Groups with their identifier as key, and the created Group as value.

Return type
Dict[str, Group]

speechmatching.recording.sanitize_raw_transcript(transcript, no_dup=True, no_space=True)
Sanitize a raw transcript by removing certain characters.

The character | is treated as a special character and will be transformed into a space if no_space is set to False.
Optionally, duplicate characters can be deleted, which is set to True by default.

Examples

>>> sanitize_raw_transcript("he||llo||world!")
'heloworld'
>>> sanitize_raw_transcript("he||llo||world!", no_space=False)
'he lo world'

Parameters

• transcript (str) – The raw transcript.

• no_dup (bool) – Whether to remove duplicate characters or not. Default value is True.

• no_space (bool) – Whether to remove spaces or not. Default value is True.

Returns
The final sanitized string.

Return type
str

2.1.6 speechmatching.utils module

Various miscellaneous helper functions for the main code.

speechmatching.utils.dicts_to_tuples(data)
Convert a dictionary to tuples.

Conversion works iteratively, each key-value pair in the dictionary becomes a (key, value) tuple.
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Examples

>>> d = {
... 'this': 'dictionary',
... 'is': {'nested': {'very': 'deep', 'extra': 'example'}},
... 'can': 'be',
... 'shallow': 'too'
... }
>>> dicts_to_tuples(d)
(('this', 'dictionary'),
('is', (('nested', (('very', 'deep'), ('extra', 'example'))),)),
('can', 'be'),
('shallow', 'too'))

Parameters
data (dict) – The dictionary to convert.

Returns
A tuple with nested tuples from the dictionary.

Return type
tuple

speechmatching.utils.ensure_list(data)
Ensure the given data is of type list, or make a new list.

If the data is not yet a list, it is made into a list, and else it is returned as-is. Data of type tuple will be converted
into a list, and else if the given data is not already a list, it will be returned as a list with data as single item
in it.

Examples

>>> ensure_list([1, 2, 3])
[1, 2, 3]
>>> ensure_list((1, 2, 3))
[1, 2, 3]
>>> ensure_list("abc")
['abc']

Parameters
data (Any) – The data to ensure is a list.

Returns
The created or already given list.

Return type
List[Any]

speechmatching.utils.print_docker_pull(messages)
Print the messages from a pull operation by docker-py.

The pull should be performed with stream=True and decode=True, for the messages to be yielded in the right
order.
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Parameters
messages (Iterator[dict])

speechmatching.utils.process_string_alnum(s)
Normalize a string to only alphanumerical characters and no duplicates.

Examples

>>> process_string_alnum("aaabbc!c???")
'abc'

Parameters
s (str) – The string to process.

Returns
The normalized string.

Return type
str

speechmatching.utils.use_directory(directory=None)
Create a temporary directory or use an existing one.

Parameters
directory (str | None) – The directory to use or create. If this directory already exists, it is
yielded, else a temporary directory is created.

Yields
The path to the directory being used (either the one provided or the newly created temporary
directory).

Return type
Iterator[str]

2.2 Changelog

Each release of the speechmatching package will have changes compared to the previous release documented here.
The initial release was version 1.0.0.

2.2.1 1.0.0 – 2024-11-10

Initial release of the speechmatching package and the acoustic binary, see the changelog of the acoustic for more
information on the latter.
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THREE

ACOUSTIC BINARY

The acoustic binary processes audio files as input using an acoustic model for a neural network. It maps outcomes
to probabilities for tokens.

3.1 Installation

To compile the acoustic binary, several dependencies with specific versions are required. Due to the somewhat
complex setup, it is recommended to use Docker.

3.1.1 Docker

The Docker image can be pulled under name aukesch/speechmatching with the acoustic binary already built in
the image, with:

docker pull aukesch/speechmatching

Alternatively, to compile the acoustic binary and the speechmatching package into a Docker image, use the
Dockerfile provided in the repositories root directory. Build the Docker image under the name speechmatching so
the image can be easily found by the speechmatching package:

docker build . -t speechmatching

This process may take several minutes to complete.

The Docker image name speechmatching is used for manually built Docker images, which can be useful during for
example testing, while the image aukesch/speechmatching is the one that is maintained by the maintainers of the
speechmatching package. The speechmatching package will first look for the speechmatching Docker image,
and else look for or pull the aukesch/speechmatching image.

3.1.2 Manual

The following versions of the dependencies were found to work well. It is possible other versions are also supported,
but this was not thoroughly tested.

• ArrayFire [arrayfire] version 3.8.3 with options

– AF_BUILD_CPU=ON

– AF_BUILD_CUDA=OFF

– AF_BUILD_OPENCL=OFF
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– AF_BUILD_EXAMPLES=OFF

– AF_WITH_IMAGEIO=OFF

– BUILD_TESTING=OFF

– AF_BUILD_DOCS=OFF

• oneDNN [onednn] version 2.5.2 with options

– DNNL_BUILD_EXAMPLES=OFF

• Gloo [gloo] branch 56b221c0a811491d2dc2a3254b468ad687bbdaab with options

– USE_MPI=ON

• kenlm [kenlm] branch 9af679c38477b564c26917a5dcf52d2c86177fb9 with options

– CMAKE_POSITION_INDEPENDENT_CODE=ON

• Flashlight [flashlight] version 0.3.1 with options

– FL_BACKEND=CPU

– FL_BUILD_ALL_APPS=OFF

– FL_BUILD_PKG_TEXT=ON

– FL_BUILD_PKG_RUNTIME=ON

– FL_BUILD_PKG_SPEECH=ON

– FL_BUILD_TESTS=OFF

– FL_BUILD_EXAMPLES=OFF

– FL_BUILD_APP_ASR=ON

– FL_BUILD_APP_ASR_TOOLS=ON

• Library intel-mkl-64bit-2020.4-912 from Intel repos [intelrepos] as:

wget https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-
→˓PRODUCTS-2019.PUB
apt-key add GPG-PUB-KEY-INTEL-SW-PRODUCTS-2019.PUB
sh -c 'echo deb [trusted=yes] https://apt.repos.intel.com/mkl all main > /
→˓etc/apt/sources.list.d/intel-mkl.list'
apt-get install -y --no-install-recommends intel-mkl-64bit-2020.4-912

All of the above should also be combined with option CMAKE_BUILD_TYPE=Release.

The acoustic binary itself can then be made and installed by:

cd build
cmake .. -DCMAKE_BUILD_TYPE=Release \

-DCMAKE_MODULE_PATH=/usr/local/share/flashlight/cmake
make
mkdir /opt/bin
cp acoustic /opt/bin

Please see the Dockerfile in the main directory of the repository for more detailed information.
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3.2 Usage

The acoustic binary can be run with the following arguments:

--help Show the help message.

-i PATH, --input-filepath PATH Path to the WAV file to process, which should have a single channel
of 16000 hertz.

--am PATH, --acoustic-model-filepath PATH Path to the acoustic model to use, this is usually either
the 70 million parameter model [70model], or the 300 million parameter model
[300model].

-o PATH, --output-filepath PATH Path to the file to write the probabilities to. If the options -stdin
is used, this file is overwritten whenever a new WAV file is given for processing.

-t PATH, --tokens-filepath PATH Path to the file with tokens to use. Usually this is a default tokens
file [tokens].

-stdin, --standard-input Listen to standard input for filenames of WAV files to process. If this option
is used together with the -i path, --input-filepath PATH option, then the
WAV file given over the command line is processed first, after which the program
continues with and start listening on standard input.

When compiled into a Docker image under name speechmatching, the speechmatching package can be installed
locally with pip, and it will look for and start a container for the speechmatching or aukesch/speechmatching
Docker image. When the program is stopped, the package will attempt to stop and remove any created container.

See the documentation for the speechmatching package for further information.

3.3 Changelog

Each release of the acoustic binary will have changes compared to the previous release documented here. The initial
release was version 1.0.0.

3.3.1 1.0.0 – 2024-11-10

Initial release of the acoustic binary.
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