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ABSTRACT

Context. Identifying and treating these diseases has become a sig-
nificant challenge due to their rapid spread and limited knowledge
among farmers. Recent research suggests that state-of-the-art deep
learning models with pre-trained weights on large datasets can
achieve high accuracy (above 95%) in disease identification. How-
ever, Existing popular models with high accuracy are based on
massive data. To address this, this paper proposes a Siamese net-
work with the triplet loss function as a more efficient and practical
approach, as it outperforms around 10% accuracy than existing
models with a cross-entropy loss function on small datasets. This
approach may help farmers develop a tailored identification model
for their wheat and crops.

1 INTRODUCTION

In recent years, with the rapid development of information tech-
nology, machine learning, image processing, and other technolo-
gies to identify crop disease images, research hotspots in disease
prevention and control have become new([1, 2]. Early methods of
identifying crop diseases[3] based on image processing technol-
ogy had disadvantages, such as manually extracted feature sets
that may not be representative, incomplete, or redundant. In com-
parison, deep learning networks can automatically learn features
and have achieved good application results in crop disease image
classification.

However, existing data sets are still challenging in meeting the
data volume requirements of wheat disease identification methods
based on traditional deep learning, and one salient sample is Plant
Village[4], which has 50000 crop images. Still, the number is small
regarding the specific crops, and the variety of diseases is not com-
prehensive enough. While there are many types of crop diseases,
single-type samples are occasional, and even the incidence of some
diseases is strongly correlated with the region, which causes the
versatility and generalization of the model to be guaranteed. From
previous researches([5, 6], we found that part of their data is col-
lected online, part of the data is collected in filed by their camera,
while the photographed data is not open to the public, which leads
it is tough to create a rich and complete data set.

Even so, there are still some studies that yielded promising results
in the detection of wheat diseases. Lakshay Goyal et al.[7] proposed
an improved architecture with a higher accuracy rate than VGG16
and RESNET-50. Genaev et al.[8] delve into EfficientNet-B0 and fine-
tune its parameters, proving that EfficientNet-BO0 can achieve better
accuracy than most mainstream models. However, both of them
are working on a large data set collected from various sources. In
addition, they have no guarantee that the models they experimented
with can be used in other real datasets or fields that do not have
access to amounts of data.

Therefore, studying methods to solve crop disease(wheat in our
paper) identification problems from the perspective of small sam-
ple detection has vital practical significance. Although some re-
searchers have progressed in this area[9], they mainly focus on
combining the image and text models, leveraging the correlation
and complementarity between the two types of disease data for
collaborative recognition. This paper aims to find a way that has
declined when few samples have superior accuracy compared to
directly porting over models training on large data sets. Thus, we
propose an improved method based on small samples to overcome
these limitations and compare the EfficientNetB0 model with triplet
and cross-entropy loss. The traditional Cross-Entropyloss may face
weak noise-robust and model overfitting during training, conver-
gence, and other issues[10].

To solve these problems, we introduce triplet loss to optimize the
feature representation of the model. Our experimental results show
that the method based on triplet loss can improve the performance
of the EfficientNetB0 model [11] in plant disease identification tasks
in small sample cases. This improved method can not only alleviate
the class imbalance and overfitting problems but also improve the
generalization ability and robustness of the model. Therefore, it has
the potential to become an important research direction in the field
of plant disease identification in the future, providing farmers with
more accurate and reliable disease identification tools and helping
them take timely measures to protect crops and improve crop yield
and quality.

We summarize our contributions as follows.

* Propose a new method: a Siamese network with the triplet loss
function, which can improve the wheat disease detection accuracy
and efficiency compared with traditional deep learning models (
with cross-entropy loss function) on a small dataset with no sup-
porting data.

* Get a higher accuracy and performance by the Siamese net-
work compared to the triplet loss function and traditional deep
learning models (EfficientNet B0) on collected and limited data
and analyze their classification and clustering ability, exploring the
trend of the performance gap between the two models changing
with the amount of data.

2 RELATED WORK

Early crop disease identification methods mainly relied on image
processing technology. Among them, manually extracting feature
sets had some problems[12], such as being labor-intensive, need-
ing agricultural engineers and phytopathologists to be carried out
properly, and the labeling made by humans could be incomplete or
redundant. In contrast, deep learning networks can automatically
learn features and perform well in crop disease image classifica-
tion. To improve the effect of crop disease identification. Khan et
al. [5] point out that deep learning models, mainly CNN, perform
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Figure 1: Architecture of proposed model

much better than traditional image processing(best accuracy reach
99.53%).

In recent years of research, the deep learning model yielded satis-
factory results when supported by sufficient data. Jiang proposed an
improved VGG16 model based on multi-task learning ideas to study
three rice leaf diseases and two wheat leaf diseases[13]. Compara-
tive experimental results show that this method is better than the
single-task model, ResNet50 model, and DenseNet201 model. Gao
proposed a dual-branch residual neural network (DECA ResNet) to
solve the problem of low accuracy of existing crop disease identifica-
tion methods. This model gets good results in disease identification
on the Challenger2018 data set[14]. From the review of Hamed et
al., we can see that most mainstream deep learning models can
achieve accuracies beyond 95% on their data set.

Although breakthroughs have been made in locating and iden-
tifying crop diseases and pests using deep learning models, the
models’ performance still depends on the number of samples in the
training data set. Therefore, learning techniques that can be learned
from a small data set, also known as few-shot learning(FSL), are
needed. A lot of work has been done in this area. They utilize tech-
niques like transfer learning, data augmentation, meta-learning,
etc. In the study by Afifi et al. [15], they take data from Plant
Village[4] and coffee leaf dataset[16] as source domain and train
a CNN on it, then use it as the feature extractor for small sample
recognition model which boosts the small recognition model to a
promising accuracy. Nuthalapati and Tunga proposed using Maha-
lanobis distance based on Transformer architecture[17], which can
significantly improve the state-of-the-art accuracy of this dataset
when the dataset is in cross-domain settings. When it comes to a

specific domain (wheat disease detection in our case), this method
can not ensure accuracy on the small data set. Moreover, both of
these experiments have a premise: they need a vast data set as an
intermediary, and their performances will decline when it comes
to one specific crop, as we discussed.

This paper proposes an improved method based on small samples
without collecting large amounts of relevant data. This improved
method introduces triplet loss on the EfficientNetB0 model to solve
the problem of crop disease identification in small sample situations.
Triplet loss is a classic metric learning method. By learning the rela-
tive distance between samples, the distance between samples of the
same type is reduced as much as possible, and the distance between
samples of different types is enlarged as much as possible, thereby
improving the model’s discriminative ability. In this method, triplet
loss is constructed by selecting an appropriate sample triplet (an-
chor, positive, negative), and the feature representation ability of
the model is optimized by minimizing triplet loss. This method
can effectively utilize small sample data and improve the model’s
performance in crop disease identification tasks.

3 METHODOLOGY

In this section, we will explain the techniques used in the whole
pipeline for wheat disease detection. The experiments were gen-
erally set to one way but with different components. Firstly, we
trained the feature extractor with a small dataset(Baseline model
with cross-entropy loss function vs Siamese network with triplet
loss function). Then, we trained a k-nn as a shallow classifier with
the same training dataset and used this trained k-nn classifier to
quantify and visualize the classification results.
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Figure 2: Comparison of accuracy of full data vs. 30 images
per class

3.1 Baseline model and improved architecture

In our experiments, we used EfficinetNetB0 as the backbone, one
of the state-of-the-art convolutional neural networks in crop dis-
ease detection. From the experiment results of Nigam et al. [18],
EfficientNetB4 reached 99.35% accuracy on wheat disease detec-
tion when there is sufficient training data(over 10000 images in
their case), which beyond all well-known and cutting-edge models
(e.g., VGG19, RestNet152, InceptionV3, etc.), due to the computing
resource constraints, we choose EfficientNetB0 (accuracy above
average) that in the same framework as B4.

For our improved architecture(as shown in Fig 1), we conducted
a Siamese Network and took EfficientNetB0 as the backbone of
it; it is not the first time that Simases Network has been adopted
in image classification. in He et al. work[19], they build a twofold
Siamese network Named SA-Siam for real-time object tracking. As
in Figure, our Siamese Network has three branches. We take three
different images as input, each of which will be feature extracted
by an independent backbone model. Then, the triplet loss function

will receive these embedding vectors to adjust better strategy to do
classification.

3.2 Defination of small data size

There is no specific data to distinguish between big and small data
sets. Whether a large or small data set usually depends on the
task and model. We can find similar experiments and literature for
our task and refer to them according to their data volume. In the
study of Afifi et al.[15], they compared the accuracy of different
architectures in detecting leaf and coffee bean diseases on a small
dataset. In their experiments, the data is divided into 32 categories,
with a maximum of 50 images per category. This means 1600 images
could be considered a small dataset in crop disease detection. Lin
et al. did few-shot learning for leaf diseases[20], and their data was
divided into ten categories of 200 images each, which means they
take 2000 images as a small dataset. In contrast, our dataset has a
total of 2414 images, and we only used 80% of them, or about 1900
images, to train the model, so our data can also be regarded as a
small dataset.

3.3 Cross-Entropy Loss

Categorical cross-entropy is a fundamental loss function for tack-
ling multi-class classification challenges in machine learning. It
assesses the disparity between two probability distributions—the
actual distribution of class labels and the distribution predicted by
the model. The loss is computed using the following formula:

Le == )" yi-log(9) (1)

In the equation, y; represents the true probability of the i-th class,
and g; denotes the predicted probability of the i-th class as given
by the model. The objective of the loss function is to minimize L
by adjusting the model parameters during training. This process
encourages the predicted probability distributiong; to align more
closely with the true distributiony;.

In the experiment, we trained EfficientNetB0 with cross-entropy
loss as the baseline to represent a model with sufficient training
data, which is exactly what Nigam et al. doing in their paper[18]

3.4 Triplet Loss

The triplet loss function enhances the distinguishability of embed-
ding representations within an Euclidean vector space, particularly
for classification tasks. It achieves this by minimizing the distance
between embeddings of the same class while maximizing the dis-
tance between embeddings of different classes, thereby adjusting
network parameters to optimize this objective. In practical imple-
mentation, a Siamese network architecture is often employed. This
architecture comprises three subnetworks with shared weights in-
terconnected by the triplet loss function. During training, three
images are chosen: an anchor (xg), a positive sample (x;), and a
negative sample (x,). Each image is processed by one of the three
subnetworks. Notably, the anchor and positive sample belong to
the same class, whereas the negative sample represents a distinct
class.

As a result, embedding vectors are produced to encapsulate the
essential features corresponding to each image class. The triplet
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Figure 3: Comparison of Precision, Recall, and F1-score when N=30

loss function then computes the distances between these three em-
bedding vectors, typically utilizing the Euclidean distance function
as expressed in Equation2.

Consequently, the network parameters undergo iterative adjust-
ments to minimize the distance between anchor and positive sample
embeddings while maximizing the distance between anchor and
negative sample embeddings. This iterative optimization process
enables the network to learn discriminative features essential for
practical classification tasks.

-Etriplet (A,P,N) =max (d(A,P) —d(A,N) +a,0) (2)

In the equation, A, P, and N represent the anchor, positive, and
negative samples. The alpha is a margin that specifies the minimum
difference between the distance between the anchor-positive and
the anchor-negative pair. It ensures that the loss is only computed if
the negative example is sufficiently far from the anchor compared to
the positive example, and the d represents the distance, the so-called
Euclidean distance computed by equation3.

d(x,y) = (3)

3.5 Advantages of triplet loss on small datasets

In small datasets, triplet loss can be more data-efficient because it
focuses on learning relative distances between examples. By lever-
aging triplets (anchor, positive, and negative), the model can learn
more effectively from fewer examples by emphasizing relational
information rather than absolute class probabilities. Cross-entropy
loss tends to perform poorly on small datasets because it relies on a
substantial amount of data to estimate class probabilities and learn
robust decision boundaries accurately. Typically, small datasets are
imbalanced, and the triplet loss function is less sensitive to class
imbalance since it works with triplets. The selection of triplets
can be designed to ensure a balanced representation of different
classes, improving the model’s robustness. In contrast, the cross-
entropy loss function is more sensitive to class imbalance, which
can be problematic in small datasets where some classes might be
underrepresented.

3.6 K-NN and t-SNE

To derive different metrics from measuring the performance of
the baseline model and improved architectures, the k-nn classifier
was adapted as a shallow classifier after the model extracted image
features in all experiments. The k-nn classifier takes feature em-
bedding vectors as input and results in a length of seven vectors,
which indicates the predicted disease type. The k-nn classifier was
trained and fitted with the same training data as the feature extrac-
tor in different experiments. This ensures the model’s performance
and all metrics are based on limited data. In addition, the neighbor
value (K) is the critical value of the k-nn classifier, so we did extra
experiments on the validation set for different K values ranging
from 1 to 80 and manually set the K value to 10, which led to a good
performance on the baseline model and improved model.

To gain a deeper understanding of these two models’ clustering
capabilities, we used the t-SNE (t-Distributed Stochastic Neighbor
Embedding) algorithm to visualize the feature embedding vectors
extracted by models. t-SNE is a powerful technique commonly used
for visualizing high-dimensional data in a lower-dimensional space,
typically 2D or 3D. It works by first constructing a probability distri-
bution over pairs of high-dimensional data points. This distribution
reflects the similarities between data points: similar points are
assigned higher probabilities of being picked together. Then, it con-
structs a similar probability distribution in the lower-dimensional
space (usually 2D or 3D). The goal is to minimize the difference
between these two distributions using gradient descent. In this way,
it visualizes high-dimensional data (feature embedding vectors in
our case) in lower-dimensional spaces, offering insights into how
these two models perform on feature extraction and clustering.

4 RESULTS

4.1 Dataset and preprocessing

The dataset we were using is an open-source contributed by Genaev
et al. [8], which has 2414 images and is categorized into seven
diseases and one healthy type. Before using these images, there
are some preprocessing steps. Every image is resized to 244x244
pixels and turned into an RGB image. In addition, some images have
multiple labels; given that we only consider cases where images
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Figure 4: clustering ability when N=30

contain one disease, we randomly choose one of the labels in our
experiments.

4.2 Experiments and training settings

We generally have two sets of experiments based on different
amounts of training data. First is the baseline; we adapted the
EfficientNetB0 with pre-trained weights of ImageNet with cross-
entropy loss function. Second is the Siamese Network with the
triplet loss function. These two networks are trained as feature ex-
tractors. To quantify the classification performance, we used a k-nn
classifier to receive the embedding vectors output by feature ex-
tractors to produce evaluation metrics and visualization results. In
all experiments, data augmentation was adapted with RandomHori-
zontalFlip, RandomPerspective, and Normalize(mean=[0.485, 0.456,
0.406], std=[0.229, 0.224, 0.225]). Adam optimizer with learning rate
a = 10~* was conducted over 50 epochs of all experiments.

To achieve the balance of the dataset, in addition to all the data,
we conducted experiments on the Baseline model and Siamese
network with triplet loss function for each class with 30 images,
a step size of 10, and up to each class 80 images. The reason we
start the experiment with 30 images per class is that if the training
and test data are too small, the results will be very chance, which is
not conducive to our conclusions, and in the whole dataset, some
classes have only about 100 images, if the training data is more than
80, then the test data set will be too small, resulting in unreliable
test results.

4.3 Classification results

To show more prominently the disparity in experimental results
due to how much data is available, In the discussion that follows,
we mainly show the comparison between the set of experiments
with the least amount of data (30 images per class) and the set with
the most amount of data(Whole data set). These two experiments
were conducted to validate the results, with two models utilized as
controls to assess performance in few-shot learning scenarios.

The first experiment (Top of Fig 2)is trained on the entire dataset,
with 60% of the data allocated for training and 20% for validation and
testing. Notably, most classes (representing various wheat diseases)
within the training data contain nearly 300 images, while the small-
est class comprises 111 images. The second experiment(Bottom of
Fig 2) adopts the baseline model to create a Siamese Network with a
Triplet loss function. The training data is configured with 30 images
per class (N=30). Figure 2 illustrates the prediction accuracy of each
class for both experiments. The experimental results reveal that
the triplet loss performs better than the categorical cross-entropy
loss across all classes in both experiments. Moreover, the triplet
loss function’s advantage becomes more pronounced when dealing
with limited data.

While accuracy provides valuable insights, a comprehensive
evaluation of model performance necessitates the adoption of addi-
tional metrics. Figure 3 illustrates the precision, recall, and f1-score
of the categorical cross-entropy loss and triplet loss when N=30.
Notably, even within a specific class (e.g., "seeding"), the cross-loss
function might outperform the triplet loss function, possibly due
to the ease of capturing features associated with this disease, lead-
ing to a higher accuracy rate. However, on the whole, the triplet
loss function consistently outperforms the cross-loss function for
smaller sample sizes. These metrics substantiate our hypothesis,
demonstrating that the triplet loss function yields greater accuracy
than the Cross-Entropy loss function when dealing with limited
data, specifically in the context of few-shot learning scenarios.

4.4 Clustering Results by t-SNE

The experiments employed EfficientNetB0 and a Siamese Network
as feature extractors, coupled with a K-Nearest Neighbor (KNN)
classifier. The KNN utilizes the embedding vector features extracted
by the models as input and predicts results for the seven classes
representing seven distinct diseases. To assess the clustering ability
of the two models, we also applied T-distributed Stochastic Neigh-
bor Embedding (t-SNE) to the embedding vectors, which visualizes
high-dimensional data in a 2D plot.



Figure 4 displays the t-SNE plots of the two models during train-
ing, with each color representing a different disease type. The left
graph depicts the baseline model with a cross-entropy loss function.
However, some similar data points are grouped, and a significant
portion of data is scattered throughout the plot, resulting in a gen-
erally loose distribution. Conversely, the right graph represents the
Siamese network with the triplet loss function, exhibiting superior
performance. Although data points of the same type are not en-
tirely clustered, most are closely positioned, resulting in a more
compact plot. Additionally, we computed the Davies-Bouldin index
(DB index) for both models. This metric assesses clustering by com-
paring the compactness within clusters to the separation between
clusters, thereby indicating the clustering ability of the models.
From the DB index values, we conclude that the model trained
with the triplet loss function demonstrates better clustering ability
compared to the cross-entropy loss function (DBindexyipletr = 4.34
vs DBindexcross = 9.79).

4.5 Exploring of the trend

In addition, in Figure 5, we show the accuracy of these two loss
functions in different ranges of training data. The graph shows
that the triplet loss function has been consistently more accurate
than the cross-entropy loss function in small sample situations.
Still, the gap narrows with increasing data volume, from around
10% gap when there are 30 images per class to around 6% when
there are 80 images per class, proving a trend in the accuracy gap
when changing the data volume. However, Because of our dataset’s
size limitations, we could not find a turning point for this scenario.
More training data is needed to determine the limitation of the
triplet loss function.
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5 DISCUSSION

Deep learning technology for crop disease detection has gained
increasing attention in recent years because of the pathologist-
oriented, subjective, costly, time-consuming, and labor-intensive

traditional detection methods[21]. Much work has been done in
crop disease detection with a large amount of data, and promising
accuracy has been achieved. Chen et al.[22] suggested an improved
VGG model on a merged dataset of maize and rice datasets, with an
accuracy of 92%. Gokulnath et al. proposed a resilient LF-CNN with
an accuracy of 98.93% on the PlantVlillage dataset. An extensive
dataset guarantees both the stability and accuracy of the model.
While it is difficult to get a vast amount of training data for crop
disease so far, like those articles we discussed in this paper, except
for those experiments on Plant, most of the rest are non-public
data obtained by some authors from different sources, and when
it comes to specific crop varieties the data of PlantVilliage are
also insufficient. Therefore, building a model that can learn from
few amounts of data is critical. Argiieso et al.[23] proposed an
architecture that can learn from a tiny amount of training data, 15
images per class. However, their model was pre-trained with the
source dataset, meaning it still needs a supporting dataset.

This paper proposes using the Siamese network with a triplet loss
function to learn from the limited dataset instead of the traditional
CNN model. We have done a series of experiments around these
two networks, from 30 images per class to 80 images per class (the
maximum value of our dataset), to compare the performance of the
proposed network and the traditional network (EfficientNetB0). The
result shows that within our dataset’s scope, the Siamese network’s
accuracy (around 40%) is about 10% more accurate than the baseline
model(around 30%). To get more insights, we also looked into the
different metrics of each type of disease and found out that, except
for "seeding,' Simases network performance is better for all the rest
of the diseases. We think "seeding" is unique because the features of
this disease are easy to recognize, so it does not need vast amounts of
data to learn. In addition, both from the comparison of 30 images per
class with the complete data and from the successive comparisons
of the accuracy of different numbers of data, we can see that the
gap between them is narrowing, which means the Siamese network
with the triplet loss function only superior to baseline with cross-
entropy loss function only with limited data.

The result and evaluation prove our proposal can achieve higher
accuracy than traditional CNN models. However, it is worth noting
that wheat diseases are geographically specific, and the same dis-
ease may manifest itself differently in different regions. Our data
does not include all areas and all diseases, so we cannot guarantee
whether they will perform the same in various datasets. In addition,
Although our accuracy is higher than that of traditional CNNs, 40%
accuracy is not enough to meet the requirements of production
conditions for the time being. Moreover, due to the limited dataset,
we haven’t found the turning point in the amount of data where the
traditional network overtakes the Siamese network. So, improving
the diversity of datasets, increasing the volume of data, and finding
the turning point will be the focus of future work.

6 CONCLUSION

Few-shot learning is a challenging subfield of machine learning and
deep learning, making developing machine learning models in real-
world settings feasible. For this reason, This thesis aims to propose
a developed model: a siamese network with the triplet loss function



and compare it with a traditional CNN model, EfficientNetB0, with
the cross-entropy loss function on a limited wheat diseases dataset.

Our experiments are built on a tiny but real farmland dataset
without any outside supporting dataset. A series of experiments
have been done on two networks to observe the performance gap
and how it changes with the amount of data and data volume from
30 images per class to 80 per class(nearly the maximum of the
dataset), with ten images added at a time. From the results of the
experiments, the triplet loss network demonstrates its superiority
over cross-entropy loss on various metrics. Notably, in our in-depth
analysis of the metrics for each disease, there was one exception:
most metrics on "seeding" present that cross-entropy loss network
perform better; we believe that it is because the features of this
disease are too simple to need large amounts of data. Also, we
analyze the generated latent space descriptors of two networks; the
triplet network improves the DB-index parameter by 125% when
N=30. Furthermore, a trend can be drawn from the results: As
the amount of data increases, the accuracy gap between the two
networks decreases, Which means there is a tipping point in the
amount of training data beyond which the triplet loss network will
no longer outperform the cross-entropy loss network.

Based on the results and findings of our experiments, this pa-
per proposes an improved network with the triplet loss function
that can perform better than the traditional model with the cross-
entropy loss function with limited training data and no supporting
data, which is closer to real scenarios and real needs in actual
farmland.
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