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Abstract

Armed conflicts are increasing in frequency and severity worldwide, resulting in devastating
humanitarian and economic consequences. Despite advances in conflict forecasting, leading
academic early warning models often lack complete openness, limiting reproducibility and
the potential for advancements in the field. Addressing this critical issue, this thesis presents
an entirely open-source framework designed to reproduce and extend state-of-the-art early
conflict forecasting models using publicly available datasets.

Specifically, we systematically evaluate three advanced machine learning approaches—XGBoost,
AutoGluon, and TabPFN—across existing datasets from ViEWS and Conflict Forecast, as well
as our own extended dataset based on the Uppsala Conflict Data Program (UCDP), covering
a period from 1989 to 2024. Our results demonstrate that fully open-source models can match,
and even slightly surpass, the predictive performance of current closed-source benchmarks, as
measured by Precision-Recall AUC.

By openly sharing all developed pipelines, datasets, models, and evaluation frameworks
developed in this thesis, we aim to foster transparency, reproducibility, and further collaborative
innovation in early conflict forecasting research.
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1
Introduction

In recent years, armed conflicts have become increasingly common worldwide, reaching levels
not seen for decades. In 2023 alone, there were 59 state-based conflicts globally, marking the
highest number recorded since systematic tracking began in 1946 [1]. Even more troubling, the
overall incidence of political violence has nearly doubled in just five years: from about 100,000
recorded conflict events in 2020 to roughly 200,000 in 2024 [2], [3]. Today, one in every eight
people worldwide lives in an area directly affected by organised violence [3]. The human cost
of these conflicts has been severe. Recent wars have caused hundreds of thousands of deaths
across multiple regions. In 2024 alone, over 233,000 lives were lost due to violence, marking a
significant 30% rise from the previous year [1]. Violent conflicts are clearly an urgent global
challenge, highlighting significant gaps in our ability to predict and respond effectively.

Beyond devastating humanitarian losses, conflicts also impose massive economic burdens,
creating long-term impacts on affected regions. Recent research highlights that timely conflict
prevention yields substantial economic benefits. Investing in early preventive measures can
generate enormous returns, with estimates ranging from $26 to $75 for every dollar spent in
countries without recent violence. For countries experiencing recent conflicts, these returns
could be as high as $103 per dollar spent [4]. Clearly, improving our ability to anticipate and
mitigate conflicts is crucial, not only to save lives but also to secure economic stability and
sustainable development.

The rapid rise in conflict frequency and its unpredictability underscore the pressing need for
reliable early warning systems. Policymakers and international organisations increasingly
recognise the importance of data-driven tools capable of identifying conflicts before they
escalate. Significant progress has been made through advancements in political risk analysis,
machine learning, and extensive use of large datasets. However, current early-warning models
still face considerable challenges, particularly regarding reproducibility and transparency. For
instance, models like ViEWS demonstrate strong performance yet provide limited access
to their data. Similarly, Conflict Forecast offers partially closed-source data and methods,
hindering independent verification and improvement efforts.

The primary objective of this thesis is to address existing limitations related to transparency
and reproducibility in existing early conflict warning systems. We aim to answer the following
research questions: (1) Can a fully open-source early conflict warning system achieve predictive
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performance comparable to current state-of-the-art systems such as those developed by ViEWS
and Conflict Forecast? (2) How effectively can advanced open-source machine learning
frameworks (XGBoost, AutoGluon, and TabPFN) perform in predicting conflict, especially
given limitations in publicly available datasets? and (3) To what extent can stacking and
ensembling techniques further enhance the predictive accuracy of early conflict forecasting
models? By addressing these questions, this research seeks to demonstrate the feasibility and
benefits of transparent, reproducible, and high-performing conflict forecasting systems.

Throughout the study, we systematically evaluate state-of-the-art machine learning methods
on datasets publicly available datasets published by ViEWS and Conflict Forecast, as well
as on our own dataset which we built to overcome limitations present in the available to us
datasets. By achieving comparable and even slightly improved predictive accuracy (measured
by Precision-Recall AUC), we demonstrate that open-source models can match or surpass
current closed-source benchmarks. Furthermore, we provide our entire pipeline and framework
openly, enabling future research and fostering collaboration1.

This thesis is structured as follows: Section 2 reviews existing literature on early conflict
forecasting. Section 3 describes the datasets used in our analysis. Section 4 outlines our
methodology, including predictive variables and our training approach. Section 5 presents
enhancements to our modelling approach, such as stacking and ensembling. Section 6 details
our results, comparing our model performance with existing benchmarks. Section 7 discusses
the implications of our findings, and Section 8 concludes by summarising contributions and
suggesting avenues for future research.

In today’s world, predicting and preventing violent conflict is not merely an academic question
— it is a critical necessity.

1The code is available at https://github.com/fif911/probabilistic_conflict_modelling

https://github.com/fif911/probabilistic_conflict_modelling
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Literature Review

Conflict early-warning systems have evolved over several decades, with their modern foundations
laid in the 1980s. Early approaches focused on structural risk indicators – static country
characteristics correlated with conflict – to identify states at risk of instability. These structural
models treated conflict propensity as a function of underlying conditions (e.g. weak governance,
economic grievances, demographic pressures) gleaned from historical data [5]. Governments
and international organizations in the late Cold War era began investing in such predictive
frameworks to anticipate crises [6]. For example, the State Failure Task Force (later PITF)
in the 1990s developed country-year risk assessments using a fixed set of indicators (on
political regime, societal fractionalization, economics, etc.) to forecast civil conflict and regime
collapse [6], [7], [8]. These first-generation models were essentially logistic regressions or
index scores built on past conflict patterns, and they provided valuable insight into long-term
vulnerability but often missed the triggers of when violence would break out.

Over time, researchers sought to incorporate more dynamic warning signals beyond static
structural data. A landmark contribution was the use of news media signals as predictors of
conflict. Chadefaux demonstrated that patterns in news reporting can foreshadow interstate
wars up to about one week in advance chadefaux2014early. Surges in conflict-related news
coverage were shown to act as early warning signals, improving short-term prediction accuracy
for war onsets. The growing availability of digital news feeds and event data in the 2000s thus
opened the door for including real-time or high-frequency event indicators into early-warning
models, complementing the slower-moving structural risk factors.

In the past decade, there has also been a pronounced turn toward machine learning techniques
in this field. Advances in computing power and new datasets have enabled researchers to
apply more advanced ML algorithms to conflict prediction tasks [9], [10]. Such models can
automatically discover complex patterns and interactions in large conflict datasets, from
country-year covariates to daily media reports. Indeed, recent reviews note that techniques
from artificial intelligence, including ML and natural language processing are increasingly
shaping modern conflict early-warning systems [6].

The result is a shift from purely theory-driven to more data-driven models. One of the most
prominent data-driven efforts is the ViEWS project (Violence Early Warning System) based
at Uppsala University [11], [12]. ViEWS provides systematic forecasts of armed conflict using
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both country-level and subnational data, updated on a monthly schedule. The project produces
probabilistic early warnings for multiple forms of political violence – including state-based
conflicts, non-state fighting, and one-sided violence against civilians – up to 36 months into
the future.

A key innovation of ViEWS is its use of an ensemble of models built on diverse feature
sets (conflict history, socio-economic indicators, political events, etc.), which are combined
as tabular features to generate more robust predictions [11]. Notably, ViEWS integrates
high-resolution data: it forecasts conflict not only at the national level but also across a grid
of local regions (with an initial focus on Africa), thereby capturing subnational variation in
conflict risk [12]. While, ViEWS published most of the code and documentation publicly, some
models are not open-source, and on all full dataset are available for public use.

As one of the great initiatives, ViEWS invites external experts to contribute. In 2022 it
organized the first prediction challenge, and in 2023 the second prediction competition [13],
[14].

Another influential group pushing the frontier of early warning is the Conflict Forecast project
led by Mueller and Rauh. This academic initiative applies machine learning and text analysis
at a global scale to predict conflict, with a special focus on the “hard problem” of anticipating
conflict onset in previously peaceful countries [15]. The Conflict Forecast uses two types
of data: structural data (such as development indicators, governance measures, and recent
violence history) and text news which are used to create news topic features from [16].

In practice, Conflict Forecast processes millions of news articles and derives 15 topics on
the news background in each country using unsupervised topic modeling (Latent Dirichlet
Allocation) [16], [17]. These textual features are combined with traditional predictors in an
ensemble machine-learning framework, yielding monthly risk estimates for each country and
PRIO grid cells [16].

While Conflict Forecast has previously released input datasets and model’s code for public
use and since 2022, no new reproducible code has been shared. [16]. In 2024 Conflict Forecast
only shared the reduced dataset 2010 onwards, which contains only 40% of the data used to
train their models without any code to reproduce the results. This hinders the reproducibility
of their results and makes it difficult to improve over their existing models for researcher to
advance the field.

Another notable development is a domain-specific large language model to analyze conflict-
related text. ConfliBERT developed by Brandt et al. is a transformer-based language model
pre-trained on a specialized corpus of conflict and political violence documents [18]. By
pretraining on corpora of conflict news and reports, ConfliBERT acquires domain-specific
understanding that enables it to outperform generic language models (like standard BERT) on
tasks such as event classification and protest detection [18], [19]. This allows to use ConfliBERT
to automatically extract structured event data (e.g. who did what to whom) from unstructured
text with higher accuracy, and improving the timeliness and quality of event feeds that other
warning models can rely on.

Another cutting-edge approach is leveraging network and deep learning methods to forecast
conflict dynamics among specific actors. A recent study by Croicu and von der Maase
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combines news text with structured event data to predict escalations and de-escalations in
violence between pairs of actors [20]. This project uses transformer neural networks to create
vector representations of actors based on their context in news articles, and then uses those
embeddings to anticipate conflict dyad dynamics (e.g. government–rebel interactions). The
result is a model that can detect volatile shifts in conflict at a granular level – essentially
mapping how relationships between warring parties evolve in real time. Initial results show
this method yields more prompt and actor-specific warnings of escalation and deescalation
dynamics, surpassing the predictive power of traditional structural country-level models in
capturing short-term changes in a conflict dynamics.

Additionally, various operational early-warning systems developed by governments and NGOs.
A recent comparative review by Hegre et al. outlines a landscape of at ten prominent systems [6].
Some are academic or nonprofit projects akin to ViEWS and Conflict Forecast, while others
are run by policy organizations and are geared toward direct conflict prevention on the ground.

For example, PREVIEW is an closed-source early-warning program of the German Federal
Foreign Office that combines quantitative risk modeling with qualitative expert analysis.
PREVIEW analysts produce country risk forecasts using statistical models with human in the
loop augmentation by regional desks’ assessments.

The Integrated Crisis Early Warning System (ICEWS), originally developed by DARPA and
now maintained by a U.S. defense contractor, is a another example of a closed-source system
that continuously monitors global event data to predict crises [6], [21]. ICEWS uses a hybrid
method that combines automated event coding, sentiment analysis, and ensemble forecasting.
It covers hundreds of countries, but its inner workings and outputs are confidential, intended
for intelligence and military use.

Moveover, there are several impressive NGO-led and academic initiatives: the ACLED Volatility
Risk Index (VRI), for instance, provides short-term forecasts of conflict surges by analyzing
deviations from baseline violence levels in ACLED’s real-time event data [22]. The Early
Warning Project (EWP), run by the U.S. Holocaust Memorial Museum, takes yet another
angle – it produces annual risk assessments specifically for mass atrocities, ranking countries
by their estimated probability of experiencing a new mass-killing episode [23]. The EWP
model is a small statistical model (a regularized logistic regression on around 20 predictors)
that is updated yearly and made to encourage preventive action in the highest-risk countries.

Other systems like Peoples Under Threat by Minority Rights Group International and the
Atrocity Forecasting Project by Australian National University also publish risk indices for
violence against civilians or mass atrocities, typically on an annual or semi-annual cycle [6].

Each system has its own methodological nuances. For instance, the EU’s Global Conflict Risk
Index uses a composite indicator approach with 24 variables to score country risk [24], whereas
Water, Peace & Security integrates environmental and water stress data into machine-learning
models for conflict in developing regions. A key distinction remains between academic/open
systems and operational/closed ones: academic projects generally publish their forecasts and
methods, while operational systems (like ICEWS or UN/AU regional models) keep their
analytics and findings internal [6].

Finally, despite the clear societal benefits that accurate early conflict warning systems can
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provide, the literature increasingly highlights significant reproducibility and collaboration
challenges in this field. Many projects label themselves as transparent or open-source, yet
in practice it often remains difficult to fully replicate their results or effectively integrate
insights across different modeling approaches [6], [25]. Even within academia, datasets may be
partially restricted and most important parts of the code may not be shared. For example,
although initiatives such as ViEWS and Conflict Forecast have made significant progress, partial
openness and limitations on data accessibility hinder the broader scientific community’s efforts
to verify, reproduce, and build upon these systems. This lack of openness and reproducibility
creates a substantial obstacle for the fast advancements in the early conflict forecasting domain.

In summary, despite significant advancements, existing early conflict warning systems still
suffer from substantial reproducibility and transparency challenges, primarily due to partial
openness and restricted data availability. Moreover, traditional structural models, while useful,
often fail to effectively capture short-term triggers and nuanced socio-political dynamics of
emerging conflicts. This thesis explicitly addresses these identified gaps by developing a fully
open-source conflict forecasting framework that combines publicly accessible datasets with
advanced machine learning methods. Through systematic evaluation of multiple state-of-the-
art modeling techniques and transparent provision of all developed resources, this research
aims to set a new standard for reproducibility and model performance in the early conflict
forecasting domain.



3
Datasets

Comprehensive political datasets are challenging to assemble and are very limited in supply.
This work uses two publicly available datasets published by ViEWS and Conflict Forecast
organizations. Both of these datasets contain a diverse set of features and are used in the
Early Conflict Forecasting domain. Additionally, we create our own dataset, which is a full
reproduction of Conflict Forecast Historical dataset. We do this to extend the amount of data
available for training the models, as Conflict Forecast only shares the reduced dataset since
2010. Table 3.1 compares all three datasets we use in this work.

All datasets used in this study are on a country-month level and source the fatalities features
from the Uppsala Conflict Data Program (UCDP) dataset.

ViEWS Conflict Forecast UCDP-based Reproduction
Data Since 1990-01 2010-01 1989-01
Data Till 2024-01 2024-12 2024-12
News Features No Yes (15 dimensions) No
# Features 126 41 26
# Rows 77,300 30,500 71,918

Table 3.1: Overview of Datasets used in this work: ViEWS, Conflict Forecast, and our custom reproduction
UCDP-based of Conflict Forecast Historical dataset

3.1. ViEWS dataset

The ViEWS dataset is composed of multiple sources with structural variables such as indicators
about economics, policy, and country terrain. The dataset covers 213 unique country IDs
from Jan 1990 to Jan 2024 and contains 77,300 rows. The dataset composes features from
the World Development Indicators [26] and V-Dem [27], data on politically excluded ethnic
groups [28], demographic factors [29], protests from ACLED [30], and national water resources
from AQUASTAT [31]. Additionally, the ViEWS team engineers temporal and spatial lag
features with decays to enhance the predictive power of the dataset. The total number of
features in the dataset is 126.

7



3.2. Conflict Forecast dataset 8

3.2. Conflict Forecast dataset

Conflict Forecast builds their dataset based on fatality counts from UCDP, population data
from the World Bank and also adds news topic modelling features based on LDA modeling of
the Factiva news database [16]. The publicly released reduced dataset covers 170 countries
from January 2010 through April 2024, comprising approximately 32 000 rows and 41 features
per row. It includes fifteen monthly topic-share variables, rolling and discounted past-fatality
indicators, months-since-conflict counters, and static covariates like population and ongoing-
conflict flags [16].

3.3. Pipeline for UCDP dataset

The UCDP dataset is our custom dataset built based on the fatality data from the UCDP
Georeferenced Events Dataset and by closely following the approach taken by the Conflict
Forecast team. Effectively, this dataset reproduces the historical Conflict Forecast dataset
without the news features. The dataset covers 35 years of data from Jan 1989 to April 2024
for 170 unique country IDs and contains 72,485 rows.

To achieve this, we build the 16-stage pipeline to fetch the latest UCDP data, aggregate it to
the country-month level and calculate the features following the Conflict Forecast definitions.
We calculate similarity score over the overlapping data with the Conflict Forecast dataset to
ensure that the data is calculated in the same way. The similarity score for each feature group
is shown in Table 3.2 and the overall similarity score calculated over all features with tolerance
of ±10−5 is 71.41%.

Feature Group Similarity (%)
past bestpc 78.35
since 100
neighbors 90.67
discounted 96.51
ongoing 100
population 100
target group (ons_armedconf_12_target) 100
fatalities_UCDP 100
armedconf 100

Table 3.2: Similarity percentage for each feature group between the UCDP dataset and the Conflict Forecast
dataset. Scores are based on overlapping data from January 2010 to December 2023, with a tolerance of ±10−5.

The description of each pipeline step is provided in the Appendix A. The implementation of
the pipeline is available in the create_ucdp_dataset folder of the repository.
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Methodology

This section describes the datasets used in this work, the definition of the dependent variable,
the models used, and the training approach of our machine learning models.

4.1. Definition of the dependent variable

The dependent variable for our Early Conflict Warning forecasting task is constructed in a way
the model would output the maximum risk of the armed conflict in the next 12 months. This
makes the task a binary classification task, where any armed conflict in the next 12 months is
considered a positive instance and no armed conflict is considered a negative instance.

We follow the Conflict Forecast approach to define the armed conflict occurrence and the
dependent variable. An armed conflict is said to occur in the country c at time t if the number
of battle-related fatalities per 1 million inhabitants exceeds a threshold of 0.5 in a given month.

conflictc,t =

{
1 if fatalitiesc,t

populationc,t
· 106 > 0.5

0 otherwise

To construct the dependent variable yc,t for model training that can predict conflicts for 12
months ahead, we annotate the time series as follows:

• yc,t = 1 if a conflict onset occurs in the next 12 months after time, t and it was preceded
by at least one full month of peace.

• yc,t = 0 if there is no conflict in the next 12 months, and the country is not in an ongoing
conflict.

• yc,t = NaN if the country is already in an ongoing conflict at time t.

The exception for the NaN values was introduced by Conflict Forecast to make the model
focus more on forecasting the conflict onsets rather than learning the patterns of ongoing
conflicts. We do not use such instances for training and evaluation of the model.

We use this definition of the armed conflict-dependent variable throughout the entire project.
Importantly, this formulation implies that the dependent variable yc,t cannot be computed for

9



4.2. Definition of hard onsets 10

the last 12 months of the data available, since for each time point t, it requires knowledge
of conflict events in the future 12-month window (t+ 1, . . . , t+ 12). This will be important
to avoid leaking data about the future when evaluating model performance described in the
section 4.4, where we describe the model training approach.

4.2. Definition of hard onsets

In addition to evaluating all conflict onsets, we pay particular attention to so-called hard
onsets, a subset of conflict outbreaks that are especially challenging to forecast. Following
the definition used by the Conflict Forecast team, a hard onset refers to the start of a new
armed conflict in a country that has experienced at least 60 consecutive months (i.e., 5 years)
of peace. These cases are of high policy relevance, as they typically represent unexpected
escalations in historically stable countries—situations where timely early warnings can have
the greatest preventative impact.

By isolating these rare but critical events, we aim to assess the ability of models not only to
detect general conflict patterns but to anticipate the emergence of new cycles of violence in
seemingly peaceful contexts.

4.3. Models

This section introduces the machine learning models employed in our analysis and outlines
the approaches used to train them. Specifically, we explore three state-of-the-art machine
learning methods: XGBoost, the AutoGluon AutoML framework, and the recently intro-
duced transformer-based TabPFN model. Each of these models has demonstrated strong
performance across various predictive tasks and represents different approaches to machine
learning—gradient boosting, automated model selection and ensembling, and transformer-based
in-context learning.

Due to the highly imbalanced nature of our datasets, as highlighted in Section 3, traditional
accuracy metrics are insufficient and overly optimistic, given the predominance of non-conflict
instances. Therefore, following established practice in conflict forecasting literature [11], [15],
we use Precision-Recall Area Under the Curve (PR-AUC) as our primary performance metric.
All models are trained and optimized to maximize PR-AUC.

4.3.1. XGBoost

Extreme Gradient Boosting (XGBoost) is a highly efficient and scalable implementation of the
gradient boosting framework, which has demonstrated state-of-the-art performance across a
wide range of machine learning tasks [32]. The algorithm operates by sequentially building an
ensemble of weak learners, typically decision trees, where each new tree is trained to correct
the residual errors of the preceding models. By optimizing a regularized objective function that
combines a loss function and a penalty for model complexity, XGBoost effectively mitigates
overfitting and enhances generalization. Its computational efficiency is achieved through
techniques such as a specialized tree-finding algorithm and parallel processing capabilities.
Due to its robustness and predictive power, XGBoost has been widely adopted in academic
research and industry, including in the domain of conflict forecasting [12].
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Hyperparameter Range Description

learning_rate [1e-5, 0.1] Step size shrinkage to prevent overfit-
ting.

n_estimators [50, 500] Total number of boosting rounds.
subsample [0.1, 1.0] Fraction of training data instances sam-

pled per tree.
colsample_bytree [0.1, 1.0] Fraction of features sampled when con-

structing each tree.
colsample_bylevel [0.1, 1.0] Fraction of features sampled for each

tree level.
colsample_bynode [0.1, 1.0] Fraction of features sampled for each

node split.
reg_alpha [0.01, 100] L1 regularization term on model

weights.
reg_lambda [0.01, 100] L2 regularization term on model

weights.
gamma [0.01, 100] Minimum loss reduction required to

make a partition.
max_depth [3, 10] Maximum depth of an individual tree.
min_child_weight [0.01, 10] Minimum sum of instance weight

needed in a child node.

Table 4.1: XGBoost Hyperparameters for Optimization

In the context of early conflict warning systems, XGBoost is used for modeling the com-
plex, non-linear relationships between structural predictors and the likelihood of political
violence [24]. Systems such as the ViEWS employ XGBoost, often within a broader ensemble
of machine learning models, to generate forecasts of conflict-related fatalities [12]. To maxi-
mize the predictive accuracy of the XGBoost model, its hyperparameters must be carefully
calibrated. Table 4.1 lists the hyperparameters we optimize and their ranges for XGBoost
model. We use Optuna, a modern hyperparameter optimization framework that employs
Bayesian optimization techniques to efficiently search large parameter spaces and identify the
optimal model configuration [33].

We train the XGBoost model on all three datasets: ViEWS, Conflict Forecast, and UCDP
with a computational budget of 5 hours per dataset per year.

4.3.2. AutoGluon

AutoGluon is an open-source Automated Machine Learning (AutoML) framework designed
to achieve state-of-the-art performance across various machine learning benchmarks [34]. It
streamlines the machine learning pipeline by automatically managing tasks such as model
selection, feature engineering, and hyperparameter tuning. One of AutoGluon’s key strengths
is its use of multi-layer stack ensembling. In this approach, AutoGluon simultaneously trains
multiple base models, whose predictions are then combined into a final, weighted ensemble
model. This method leverages the complementary strengths of diverse algorithms, often
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resulting in a more robust and accurate predictive model compared to any single manually
optimized model.

For the early conflict forecasting task, we specifically utilize the AutoGluon-Tabular module,
which is tailored for structured data. This module automatically evaluates a comprehensive
range of machine learning models, including tree-based ensembles and neural networks. Ta-
ble 4.2 summarizes the models supported by AutoGluon-Tabular that we use through the
study.

Model Description
LightGBM (LGBM) A high-performance gradient boosting framework using

histogram-based algorithms for speed and efficiency.
CatBoost A gradient boosting algorithm that excels at natively handling

categorical features without extensive preprocessing.
XGBoost A scalable and regularized gradient boosting implementation

known for state-of-the-art performance.
Random Forest (RF) An ensemble method building multiple decision trees on

random subsets of data and features to improve accuracy.
Extra Trees (XT) A variant of Random Forests that introduces more random-

ness in how node splits are chosen to reduce variance.
TabularNeuralNetTorch A PyTorch-based multi-layer perceptron (MLP) specifically

designed for tabular data.
NNFastAiTabular A neural network for tabular data built using the fast.ai

library, featuring useful defaults.

Table 4.2: Models Supported by AutoGluon-Tabular

The main feature of AutoGluon is its multi-layer stacking and ensembling process, which
allows to maximize the predictive performance of the models by using so called wisdom of
the crowd [11]. The multi-layer stacking process begins by training base models in parallel
on the initial data layer. These initial models generate out-of-fold predictions, which serve
as meta-features for subsequent model layers. At each subsequent layer, AutoGluon trains
additional models and fits a weighted ensemble, identifying the optimal linear combination
of model predictions. Consequently, the final model is typically a comprehensive weighted
ensemble derived from all successful models across multiple layers.

We train AutoGluon models for all three datasets and allocate an identical computational
budget of 5 hours per dataset per year to ensure fairness and consistency in comparing
AutoGluon’s performance with other models.

4.3.3. AutoGluon Hyperparameter Optimization

By default, AutoGluon does not perform hyperparameter optimization (HPO) for its constituent
models. Instead, it selects hyperparameters from a predefined portfolio of model configurations
and trains them within the provided computational budget. While this portfolio-based approach
typically provides robust performance across various tasks, it may not be optimal for highly
specialized or domain-specific datasets such as the one we have for early conflict forecasting.
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To further improve the results, we explored AutoGluon’s built-in hyperparameter optimization
feature, which optimizes the model hyperparameters instead of relying solely on predefined
portfolio. We initially considered all models supported by AutoGluon-Tabular listed in
Table 4.2, but through our experimentation, we identified that hyperparameter optimization
brought substantial improvement only for Random Forest and CatBoost models. Other models,
such as XGBoost, LightGBM, and various Neural Networks, did not demonstrate significant
performance gains with enabled HPO during our experimentation.

Due to computational constraints, we conducted hyperparameter optimization exclusively on
the UCDP dataset, which was identified as the most promising for achieving state-of-the-art
performance. The optimization was integrated into the yearly training scheme described in
Section 4.4. This means that for every year we make a separate search for the most optimal
hyperparameters. The approach for HPO does not deviate from our yearly training scheme
definition and has precisely the same training, validation, and test dataset splits.

Table 4.3 summarizes the hyperparameter ranges we set for the Random Forest and CatBoost
models during HPO, and the best value of of the range is selected for each prediction year. We
employed Bayesian optimization as our hyperparameter search strategy, setting a computational
budget of 30 minutes per model per year. The performance metric to optimize was set to
Precision-Recall AUC.

Model Hyperparameter Search Space

Random Forest n_estimators [300, 400]
max_depth [3, 5]

CatBoost scale_pos_weight [5.0, 6.0]
iterations [500, 2000]
depth [6, 10]
learning_rate [0.005, 0.1] (log-scale)
l2_leaf_reg [1, 10]
border_count [32, 255]
random_strength [1, 20]
bagging_temperature [0, 1]
early_stopping_rounds 20 (fixed)

Table 4.3: Hyperparameter search spaces and tuning settings for Random Forest and CatBoost models. Each
model was tuned for 30 min per year, optimizing PR-AUC.

4.3.4. TabPFN

TabPFN v2 is a Transformer-based tabular foundation model designed for in-context learning
on small and medium-sized tabular datasets, enabling classification and regression without
explicit model training or hyperparameter tuning for each new task [35]. Its architecture
allows the model to process the entire dataset as a prompt, performing accurate predictions
in a single forward pass. TabPFN’s training dataset consists exclusively of synthetic tables
generated by structural causal models. This is great for conflict forecasting domain, as this
ensures that no real-world data is leaked into the training process, to give an unfair advantage
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to the model. Empirical evaluations demonstrate that TabPFN significantly outperforms
traditional gradient-boosted methods like CatBoost, XGBoost and even AutoGluon framework,
achieving superior predictive performance with drastically reduced inference latency. The main
limitation of TabPFN is that it was trained on the datasets below 10,000 rows, and authors
explicitly state that the performance is not guaranteed on larger datasets.

Due to the novelty of this model, there was no prior work on applying it to Early Conflict
Forecasting. In this work, we apply TabPFN to the Conflict Forecast dataset only as it is
the smallest of all available. We also briefly test the performance on two larger ViEWS and
UCDP datasets. Notably, despite being the smallest out of all three datasets, the Conflict
Forecast dataset size is at least three times larger than the maximum recommended size for
TabPFN [36]. As per computational budget, since TabPFN does not require model training,
we do not perform any hyperparameter optimization and only run the model without upper
training limit.

To improve the TabPFN performance even further, the AutoTabPFN was introduced [37].
AutoTabPFN implements a post-hoc ensemble strategy by instantiating multiple perturbed
TabPFN base models within a user-specified time budget and greedily combining their outputs
into a weighted ensemble optimized for a chosen metric. Empirical results on over 300 datasets
show that even modest ensemble sizes yield consistent, statistically significant accuracy
improvements [37].

Our initial assumption was that even a short computational budget for AutoTabPFN ensemble
would surpass the vanilla TabPFN model. In the Section 6.1, we found that the 5 and
15-minutes AutoTabPFN ensemble performed worse than the vanilla TabPFN model on the
ViEWS dataset. As AutoTabPFN is a computationally expensive process, this spiked our
interest in further investigating the optimal computational budget for the AutoTabPFN
ensemble for our subsequent datasets.

We conducted a computation budget test on the Conflict Forecast dataset, varying the runtime
from 5 minutes up to one hour. The results are shown in Figure 4.1. We observed that
the performance gradually increases and peaks at 45 minutes before plateauing and even
dipping slightly at longer runtimes. Interestingly, the performance of AutoTabPFN ensemble is
weaker than vanilla TabPFN before the 21-minute mark for Conflict Forecsat and also slightly
decreases at 1 hour mark. This finding mirrored the evidence from Section 6.1 and based on
these results, we set 45 minutes as the computational budget for all subsequent AutoTabPFN
experiments.

4.4. Model training approach

This subsection outlines the training strategy adopted across all experiments, including key
validation design choices, measures taken to prevent data leakage and further optimizations
used to improve model accuracy. We follow the standard pseudo-out-of-sample evaluation
approach widely used in the conflict forecasting literature. Under this setup, models are
trained exclusively on data that would have been available at the time of prediction, thereby
simulating realistic forecasting conditions.

As discussed in Section 4.1, our dependent variable yc,t is defined based on conflict occurrence in
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Figure 4.1: Performance of AutoTabPFN ensemble on Conflict Forecast dataset with different computational
budgets with Jan 2022 as a test set.

the 12-month future window, (t+1, . . . , t+12). Consequently, we cannot compute our dependent
variable for the last available 12 months of each dataset, since those future observations are
unavailable. For example, if were currently in January 2024 and wished to train a model to
forecast the risk of armed conflict over the next 12 months, we would have had observations
up until January 2024 with the dependent variable only up to January 2023, as we do not
have data for February 2024 to construct the dependent variable for February 2023. Thus for
pseudo-out-of-sample evaluations, in case we want to simulate that we are now in January
2024, we must limit the training data to observations no later than January 2023. Including
data beyond that point would imply having knowledge of conflict events that happened beyond
January 2024, which violates the causal structure of forecasting and would leak the information
about the future into the model.

In this work, we apply two model training schemes: yearly and monthly. They differ in how
the training data is constructed and how frequently models are updated. These approaches,
along with validation set design and additional optimization procedures, are described in detail
in the following subsections.

4.4.1. Yearly training scheme

Under the yearly training scheme, we retrain a new model for each forecast year, using only
data that would have been available prior to that year. This setup ensures that the evaluation
is pseudo-out-of-sample and prevents any information from leaking from the future into the
model. Crucially, to ensure no data leakage into the future, we introduce an 11-month buffer
between the end of the validation set and the beginning of the test period. The visualization
of the yearly training scheme is shown in Figure 4.2.

Each yearly model is trained on a dedicated training set and validated on a temporally
separated validation set. Once the optimal hyperparameters are selected based on validation
performance, the model is retrained on the combined training and validation data.

This process is repeated independently for each year as we do not reuse model weights or
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Figure 4.2: Yearly training scheme for the Early Conflict Forecasting task. Each year, a new model is trained
on data available up to that point, with an 11-month buffer to prevent leakage of data about future state of

the dependent variable.

hyperparameters across forecast years. A separate model is trained for each forecast window
(e.g., 2018, 2019, . . . , 2025), allowing the training procedure to adapt fully to the data available
up to that point. This differs from the methodology used by the Conflict Forecast team,
who train a single model once and reuse it across years, retaining fixed hyperparameters.
Pseudocode for the yearly training scheme is outlined in Algorithm 1.

Algorithm 1 Yearly Forecast: Pseudo Out-of-Sample Training.
Require: Full monthly sample D = {d1990m1, d1990m2, . . . , d2025m04}
Require: Set of forecast years Y = {2010, . . . , 2024} ▷ dependent variable is availalbe only

till 2024-04
Require: Validation window length V (years)
Require: Forecasting model class F
Ensure: Predictions ŷJan–Dec Y for all Y ∈ Y
1: for each Y ∈ Y do
2: test_input← {d(Y−1)m1, . . . , d(Y−1)m12}
3: holdout← {d(Y−2)m2, . . . , d(Y−2)m12} ▷ 11-month gap
4: val_end← d(Y−2)m1 ▷ Jan (Y − 2)
5: val_start← val_end− (12V ) months ▷ Jan (Y − 2− 12V )
6: TRAIN ← {dt | 1990m1 ≤ t < val_start}
7: V ALID ← {dt | val_start ≤ t ≤ val_end}
8: θ⋆ ← argmin

θ
Loss

(
F (θ,TRAIN),VALID

)
▷ hyper-parameter optimisation

9: Refit model F on TRAIN ∪ VALID with θ⋆

10: ŷJan–Dec Y ← F (test_input)
11: end for
12: return {ŷJan–Dec Y }Y ∈Y

4.4.2. Monthly training scheme

To mimic the information set available to an operational warning system, we also implement
a rolling, month-by-month training procedure inspired by the one implemented by Conflict
Forecast. At the beginning of each calendar month, the one more month of data with the
dependent variable becomes available, and we augment the training set with this new data
point. Opposed to the yearly training scheme, where the model is trained once per year,
the monthly training scheme allows us to readjust the model every month, which allows the
model to adapt to the most recent changes in the data. Such a monthly model rebuilding and
recalibration is a common practice in the conflict forecasting literature [15], [38].

The structure of the data split, illustrated in Figure 4.3, is as follows. The training window
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begins in January 1990 and expands by exactly one month at every iteration; immediately
after the training set follow a validation set windows, which we keep of fixed length. The
validation block always ends twelve months before the forecast origin, so an eleven-month
hold-out buffer separates the last validated instance from the target period.

For computational efficiency, hyperparameters are chosen once, in the January run of each
calendar year, by minimising the loss on that year’s validation block. They are then kept fixed
for the remaining eleven monthly refits, so that the only change from one iteration to the next
is the inclusion of the newly available training month and retraining of the model on the newly
available data.

Figure 4.3: Monthly training scheme for the Early Conflict Forecasting task. Each month, a new model is
retrained on data available up to that point, with fixed hyperparameters chosen in the first month of each year.
An 11-month buffer is maintained to prevent leakage of data about the future state of the dependent variable.

Compared with the yearly retraining schedule, the monthly scheme therefore produces twelve
independent refits per calendar year, each based on a slightly larger estimation sample. In
doing so, it allows the learner to absorb the most recent conflict signals. While the assumption
is that monthly training scheme will benefit from having additional data, in the Section 6 we
find that the improvement is marginal and sometimes even negative.
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Algorithm 2 Monthly Forecast: Rolling Refit with Fixed Hyper-parameters.
Require: Full sample D = {d1990m1, . . . , d2025m04}
Require: Forecast years Y = {2010, . . . , 2024}
Require: Validation length V (years)
Require: Forecasting model class F
Ensure: Predictions ŷY,m for every Y ∈ Y and m ∈ {1, . . . , 12}
1: for each Y ∈ Y do ▷ loop over calendar years
2: val_end← d(Y−2)m1 ▷ Jan (Y −2)
3: val_start← val_end− (12V ) months ▷ V full years
4: TRAIN ← {dt | 1990m1 ≤ t < val_start}
5: V ALID ← {dt | val_start ≤ t ≤ val_end}
6: θ⋆ ← argminθ Loss

(
F (θ,TRAIN),VALID

)
▷ hyper-parameter optimisation

7: for m = 1 to 12 do
8: test_input← {d(Y−1)mm} ▷ current forecast origin
9: Refit F on TRAIN ∪ VALID with fixed θ⋆

10: ŷY,m ← F (test_input)
11: if m < 12 then ▷ prepare windows for next month
12: val_start← val_start+ 1 month
13: val_end← val_end+ 1 month
14: TRAIN ← {dt | 1990m1 ≤ t < val_start} ▷ TRAIN grows by one month
15: V ALID ← {dt | val_start ≤ t ≤ val_end} ▷ VALID slides by one month and

stays of fixed length
16: end if
17: end for
18: end for
19: return {ŷY,m}

4.4.3. Optimal validation set size

Selecting an appropriate validation window length is critical to balance bias and variance in our
pseudo-out-of-sample evaluation. Following the hold-out cross-validation approach described
by Lynam et al. [25], we experimented with multiple amount of years in the validation set
(see Algorithm 1) to identify the configuration that maximizes Precision–Recall AUC on the
validation and test sets.

To conduct our experiment, we run train a yearly AutoGluon model for 1 hour on the best
configuration for each combination of validation window length V and dataset. Due to
computational limitations, the ViEWS and Conflict Forecast validation window lengths were
chosen mostly empirically, while the UCDP validation window length was chosen based on a
systematic evaluation of multiple validation window lengths.

We stay consistent with our previous work, and we put 4 years in the validation set for ViEWS
dataset. We find that due to the high dimensionality in the ViEWS dataset, 4 years of
validation set allows to assign much more data to the training set, which allows the model to
learn better.

To select the optimal validation window length for the Conflict Forecast, we conducted an



4.4. Model training approach 19

empirical evaluation of multiple validation window lengths V ranging from 1 to 6 years. We
find that 4 validation years on Conflict Forecast V allow for the best balance between the
amount of the data in the validation set and the amount of the data being left for training.

The UCDP dataset has much fewer dimensions than ViEWS and has 20 years more data than
Conflict Forecast. This allows using a longer validation set, to stabilize the model performance,
while also keeping the complexity of the model low because of fewer dimensions compared
to ViEWS dataset. For the UCDP dataset, due to computational limitations, we empirically
test the validation window lengths from 1 to 14 years. We find that the higher validation set
size improves the out-of-sample performance, so then we systematically test the validation
set sizes for V ∈ {9, 12} ∪ {14} years. The summary of the results is shown in Table 4.4. We
choose the 10-year validation window as it achieves the highest mean test PR AUC set with
reasonable stability.

Validation Years (V) Mean Test PR AUC Std Dev Corr (Val vs Test)
9 0.7074 0.0775 –0.116
10 0.7181 0.0692 –0.402
11 0.7028 0.0720 –0.511
12 0.7176 0.0582 –0.260
14 0.7021 0.0548 –0.362

Table 4.4: UCDP: Validation window analysis. The 10-year window (bolded) achieves the highest mean test
PR AUC with reasonable stability.

Table 4.5 report the chosen validation set size for each dataset. All subsequent experiments
adopt these optimal values of V for their respective datasets.

Dataset Amount of validation years
ViEWS 4
Conflict Forecast 4
UCDP 10

Table 4.5: Optimal validation set size for each dataset, chosen to maximize Precision–Recall AUC.



5
Modeling Enhancements

Ensemble methods are a powerful way to boost predictive performance by combining multiple
models. This section outlines four key improvements we tested to enhance our conflict
forecasting performance: stacking, ensembling, combining stacking and ensembling, and
news-feature experiments.

5.1. Stacking

Model stacking, or stacked generalization, is a meta-learning strategy designed to leverage
the complementary strengths of multiple predictive models. Rather than settling on a single
algorithm, stacking unfolds in two distinct steps. In the first tier, a collection of base learners is
trained on the original feature set; each base learner generates its own out-of-sample predictions
via a cross-validation or rolling-forecast scheme, thereby guarding against information leakage.
These first-stage predictions encapsulate diverse patterns of the data that individual models
have learned. In the second tier, a meta-learner is then trained on this expanded feature
space, which consists of the original covariates (optionally) plus the level-one predictions. By
doing so, the meta-learner learns how to optimally weight and combine the strengths of each
base model, often yielding improvements in calibration, discrimination, and overall predictive
accuracy relative to any single constituent.

In our application to monthly armed conflict risk prediction, we adopt precisely this two-stage
architecture and Figure 5.1 illustrates our stacking pipeline in detail. At Level 1, an AutoGluon
RF&CAT (Random Forest and Cat Boost) model is trained each year on UCDP-derived
structural covariates spanning 1990–2023. We then generate truly out-of-sample predictions
for every country–month in 2010–2023 via a year-by-year rolling scheme, ensuring that each
forecast is based only on data that would have been available at the time. The baseline armed
conflict risk score, which synthesize long-run historical signal, is then merged with the publicly
accessible Conflict Forecast dataset’s with LDA news and structural features (our UCDP
dataset and Conflict Forecast dataset are almost identical for the 2010–2023 period, so the
results do not change on whether we merge Conflict Forecast news features to UCDP dataset
or our Model 1 prediction to Conflict Forecast dataset). At Level 2, a second AutoGluon
RF&CAT model learns to map this enriched feature vector—combining structural history and
real-time news metrics—onto coup-risk outcomes for 2018–2023. Empirically, this stacked

20
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Figure 5.1: Our two-stage stacking pipeline. Level 1 distills historical conflict features into an out-of-sample
baseline forecast of armed conflict; Level 2 refines that forecast by incorporating Conflict Forecast news

indicators that are available only since 2010.

ensemble improves the precision recall score for all onsets, confirming that the addition of the
news indicators can add another 1–2 percent to the overall performance of the model.

5.2. Ensembling

Ensembling is an effective modeling approach that combines predictions from several individual
models to create a single, more robust forecast. This method is widely used in the field
of Early Conflict Forecasting, and often referred as a wisdom of the crowd approach [11].
Typically, each model’s performance is first evaluated on a validation set, and then based on
additional data between the validation and test sets the model predictions are used to derive
and calibrate weights to reflect how much each model should contribute to the final ensemble.
Thus, predictions from better-performing models have greater influence, while weaker models
contribute less.

In this work, we use ensembling extensively. First, we utilize AutoGluon’s built-in weighted
ensemble capabilities, where the framework automatically combines the predictions of its
internal models based on validation performance (see Section 4.3.2). Additionally, we implement
a custom weighted ensembling pipeline to combine multiple AutoGluon final models. This
approach allows us to leverage the strengths of various individually trained AutoGluon models,
further boosting predictive performance. The exact implementation and performance gains
from this custom ensemble approach are discussed in detail in the Section 5.3. Figure 5.2
visualizes the concept of weighted ensembling.

5.3. Combining Stacking and Ensembling

To further enhance predictive performance, we combine stacking and ensembling into a unified
modeling pipeline. Figure 5.3 illustrates this combined approach.

The stacking part of our pipeline follows the definition outlined in Section 5.1, where we first
train a Level-1 AutoGluon Random Forest and CatBoost model on historical-only features
from the UCDP dataset, and subsequently enrich these predictions with news-based features
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Figure 5.2: Weighted ensembling approach: each model’s predictions are combined into a single forecast
using validation-derived weights.

provided by the Conflict Forecast dataset. We find this pipeline performs strongly on all
conflict onsets, but is less robust when predicting hard onsets.

To improve the stacked model further, we employ a weighted ensembling technique by integrat-
ing an additional AutoGluon Random Forest model trained solely on historical features from
the UCDP dataset. This AutoGluon HPO model performs strong on hard onsets, which makes
it a great candidate for ensembling with the stacked model (see Section 4.3.3 for the model
definition). By combining these two complementary models through weighted ensembling, we
leverage both the historically and news informed stacked model and the simpler, yet robust,
historical-only model. We conduct a systematic search to identify optimal ensemble weights
based on out-of-sample performance on validation set. The optimal weights derived for the final
ensemble model are 0.25 for the stacked AutoGluon model with news-enhanced predictions
and 0.75 for the historical-only AutoGluon Random Forest model.

This combination yields our strongest performing model, achieving our highest accuracy on
all conflict onsets and a decent performance on hard onsets (see Section 6.3 for detailed
performance analysis). It is important to note that while this combined approach maximizes
predictive accuracy, it introduces additional complexity in terms of explainability. Unlike
simpler individual models such as XGBoost or single AutoGluon models that have built-in
support for SHAP value analysis, this ensemble pipeline requires additional steps to derive
SHAP values. Nevertheless, if interpretability is required, SHAP analysis can still be feasibly
conducted for this pipeline.

5.4. News-feature experiments

We conduct experiments with text features to enhance our models with additional signals
from monthly news summaries. Unlike the Conflict Forecast approach, which relies on LDA
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Figure 5.3: Combined stacking and weighted ensembling approach. The predictions of the stacking pipeline
(UCDP historical features enriched with Conflict Forecast’s news-based predictions) and the separate UCDP

historical-only model are combined through optimized weighted ensembling to yield improved predictive
performance.

topic modeling to summarize news data into fixed topics [15], we attempt to directly encode
the entire textual content of monthly summaries into vectors. The main advantage of this
approach is the retention of detailed textual information rather than reducing it solely to
broad topics. The reasoning for such approach is that with vectorised text, the model can
learn more nuanced relationships between the monthly summary of what has happened in
the country, structural variables and the armed conflict risk, instead of relying only on slowly
moving structural variables.

To construct these news features, we scrape concise yet detailed monthly summaries from the
CrisisWatch website [39]. This dataset spans approximately 21 years (2003–2024), covering
around 80 countries per month, resulting in roughly 20,000 country-month observations.
Although valuable, this dataset size is fairly small for training multimodal BERT-based
deep-learning models [40].

Figure 5.4 illustrates the pipeline we follow in this experiment. We first encode the textual
summaries into numeric vectors using AutoGluon’s multimodal package, which natively
supports combining textual and numeric features [41]. These encoded vectors are then merged
with structural variables from the UCDP dataset. The combined dataset is used to train a
multimodal model that predicts armed conflict risk.

Despite the conceptual appeal of this approach, our experiments did not yield significant
improvements. The multimodal model struggled to learn meaningful relationships from the data.
This outcome is likely due to the limited dataset size—approximately 20,000 samples—being
insufficient to train a deep-learning model with such high-dimensional textual data effectively.
Future studies could explore larger datasets or alternative methods, such as transfer learning
from pretrained language models, to better leverage textual information. A great attempt to
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implement such approach that does not lose information was done by the ViEWS team using
Large Language Models and indiviadual news [20].

Figure 5.4: News modelling pipeline that vectorizes the monthly CrisisWatch summaries for each country,
combines them with the structural features, and trains a model to predict the risk of armed conflict.



6
Results

In this section, we present the results of our experiments on the three datasets: ViEWS,
Conflict Forecast, and UCDP. We evaluate the three machine learning approaches described in
Section 4.3, as well as for our improvements described in Section 5.

When comparing models and analysing the results, we focus on the Precision–Recall AUC (PR-
AUC) score as our primary metric. Nevertheless, we also report the Area Under the Receiver
Operating Characteristic (ROC-AUC) score for completeness in the Appendix Section B

6.1. Model Performance on ViEWS data

In this section, we present the results of running our three main models—AutoGluon, XGBoost,
and TabPFN—as well as two variations of AutoTabPFN, on the ViEWS dataset. We use the
yearly training scheme described earlier, meaning we retrain each model once per forecast
year. Additionally, for AutoTabPFN, we ran models with computational budgets of 5 and 15
minutes to see their relative performance.

We find that AutoGluon clearly outperforms all other models when predicting all conflict onsets,
achieving a Precision–Recall AUC (PR-AUC) of 0.708. This result is substantially better
compared to XGBoost (0.619) and the vanilla TabPFN model (0.572). Interestingly, while
AutoTabPFN with a 5-minute computational budget (PR-AUC = 0.560) slightly underperforms
compared to vanilla TabPFN for all onsets, AutoTabPFN with a 15-minute budget performs
even worse (PR-AUC = 0.511). This unexpected result aligns with the empirical tests we
performed later, which showed that AutoTabPFN only starts outperforming the vanilla
TabPFN model after approximately 22 minutes of computation.

Predicting hard onsets, defined as conflicts emerging after at least five years of peace (see
Section 4.2), is significantly more challenging for all models We see that AutoGluon achieves the
highest PR-AUC of 0.363. The vanilla TabPFN significantly drops in performance (PR-AUC
= 0.127), while AutoTabPFN with a 5-minute budget slightly improves over vanilla TabPFN,
achieving a PR-AUC of 0.144. Again, the AutoTabPFN with a 15-minute budget performs
poorly, obtaining a PR-AUC of only 0.044.

Overall, these results highlight AutoGluon’s consistent strength in predicting conflicts using
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the ViEWS dataset. The findings regarding AutoTabPFN’s relative underperformance at 5
and 15-minute computational budgets are consistent with our later observations described
in Section 4.3.4, indicating that AutoTabPFN requires a longer runtime to surpass vanilla
TabPFN performance. Additionally, due to the large dataset size, TabPFN cannot perform
optimally. These results are visualized in Figure 6.1a and Figure 6.1b, which show the PR-AUC
performance of all models from 2018 to 2023 for all onsets and hard onsets respectively. It’s
also important to mention that these ViEWS results cannot be directly compared with Conflict
Forecast and UCDP datasets, because although the dependent variable is calculated similarly,
the underlying fatality counts differ, making the results inherently incomparable.

(a) Model performance on ViEWS dataset (2018–2023),
all onsets.

(b) PR-AUC accuracy of our models on ViEWS dataset
(2018–2023), hard onsets.

Figure 6.1: Precision–Recall AUC score comparison of models on the ViEWS dataset for all onsets and hard
onsets.

6.2. Model Performance on Conflict Forecast Data

In this section, we present the performance results of the various models trained on the Conflict
Forecast dataset over the period from 2018 to 2023. To benchmark our models we use the
best three model published by Conflict Forecast team: the text-only model (CF Text), the
historical-features model (CF Hist), and the full-feature model (CF All). Figure 6.2a and
Figure 6.2b illustrate the Precision–Recall AUC (PR-AUC) scores for all our models across all
conflict onsets and hard onsets and how they compare to the best-performing Conflict Forecast
models.

Analysing the performance across all conflict onsets, we observe an intriguing set of results.
The AutoGluon yearly model, trained using all available models without hyperparameter
optimisation (exactly as done for the ViEWS dataset), achieves the lowest PR-AUC of 0.6528.
This indicates that despite its strength on the ViEWS dataset, AutoGluon does not perform
as well on Conflict Forecast data under these settings. This outcome is unexpected given the
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model’s generally robust performance in other experiments and highlights the potential impact
of model selection and the absence of hyperparameter tuning, which will be explored further
in the subsequent section on UCDP dataset analysis.

The vanilla TabPFN model significantly outperforms AutoGluon, demonstrating an effective
capacity to capture the complexities within this smaller dataset. However, the AutoTabPFN
ensemble trained with a yearly scheme over 1 hour shows a slightly worse performance
compared to the simpler TabPFN model. This is contrary to our expectations, as the additional
computational resources dedicated to AutoTabPFN were shown to typically improves model
performance [37]. The Conflict Forecast dataset is three times larger than the recommended
size for TabPFN and this likely causes model performance degradation, despite the fact that
both TabPFN and AutoTabPFN, do support larger datasets [42].

The best-performing yearly trained model is XGBoost, achieving a PR-AUC that surpasses
both AutoGluon and the TabPFN yearly models. Yet, notably, implementing a monthly
optimisation scheme for XGBoost does not yield any substantial performance improvement,
suggesting limited incremental gains from continuous monthly updates for this particular
model on the Conflict Forecast dataset.

Encouraged by the promising results of the TabPFN model, we conducted a monthly optimisa-
tion scheme for this model, significantly enhancing its performance. This monthly optimisation
of TabPFN yields a PR-AUC of 0.6914, representing a meaningful increase of 4.06% over the
yearly-trained TabPFN model, which has a PR-AUC of 0.6644.

To maximise the potential of the AutoTabPFN model on the Conflict Forecast dataset, we run
an AutoTabPFN monthly training scheme using a computational budget of 45 minutes per
month, leveraging Nvidia L40S GPUs for a total of 54 hours of computation. The resulting
model achieved the highest PR-AUC of 0.6946, surpassing all other models tested on this
dataset. However, this result is still not enough to catch up with the best Conflict Forecast
model, which has a PR-AUC of 0.7289.

Focusing specifically on hard onsets, all models experience a notable decrease in predictive
performance, underscoring the inherent challenge in forecasting outbreaks in countries with
prolonged peace, even with the news LDA topic modelling. Our best AutoTabPFN monthly
model performs twice as poorly as the best model of Conflict Forecast on hard onsets.

Overall, we see that even our best-performing model on the Conflict Forecast dataset is still
considerably behind the top Conflict Forecast models for both all and hard onsets. Our
assumption is that while the best Conflict Forecast models are trained on the full dataset, the
limited dataset that is available to the public is not enough for the models to effectively learn
and generalise.

Therefore, we decided to replicate the Conflict Forecast dataset by constructing our own
version based on the UCDP data (see the Section 6.3 for performance on this dataset and
Section 3.3 for details on how we constructed the dataset). The results of our models trained
on this newly created dataset are presented in the next subsection.
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(a) Model performance on Conflict Forecast dataset
(2018–2023), all onsets.

(b) Model performance on Conflict Forecast dataset
(2018–2023), hard onsets.

Figure 6.2: Precision–Recall AUC score comparison of models on the Conflict Forecast dataset for all onsets
and hard onsets.

6.3. Model Performance on UCDP data

In this section, we evaluate how well our models perform on the replicated UCDP dataset
for the years 2018 to 2023. Our goal throughout this study has been to match and ideally
surpass the performance of the Conflict Forecast team. Figure 6.3a and Figure 6.3b report the
performance of our models compared to the best Conflict Forecast models.

When looking at the prediction of all conflict onsets, our models show promising results. Our
simpler approaches, such as XGBoost Yearly (PR-AUC = 0.6319) and TabPFN Monthly
(PR-AUC = 0.6813), perform reasonably well but still fall short compared to the CF models,
especially the CF All model (PR-AUC = 0.7289). However, once we move to more advanced
methods like AutoGluon with yearly hyperparameter optimisation (PR-AUC = 0.7278) and
monthly hyperparameter optimization (PR-AUC = 0.7279), our models quickly catch up,
nearly matching CF’s best model performance.

The finding that TabPFN as well as AutoTabPFN models do not perform well on large datasets
is consistent with TabArena benchmark that highlights that Tabular foundational models are
still not ready for large datasets [42]. At the same time, poor XGBoost performance likely
means that the selected range of the hyperparameters is suboptimal for the UCDP dataset, as
the same hyperparameters range on the Conflict Forecast dataset yielded better results (see
Section 6.2).

Most importantly, our stacked AutoGluon model, which combines multiple learners, reaches a
PR-AUC of 0.7316. This result not only successfully reproduces the performance of the CF
All model but slightly exceeds it, marking a significant achievement and highlighting the value
of carefully combining diverse models.
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The story changes when predicting hard onsets. While CF All still holds the best performance
with a PR-AUC of 0.2358, our best model—the AutoGluon Random Forest with yearly
optimisation—achieves a PR-AUC of 0.2184. Our stacked AutoGluon ensemble achieves
0.2123, clearly surpassing the simpler CF Text model (0.1539) but still lagging behind CF All
and CF Hist.

The results on the UCDP dataset demonstrate that we have successfully reproduced the
Conflict Forecast models’ performance. By leveraging advanced methods like AutoGluon
and stacking different models, we even managed to slightly improve upon the original CF
benchmark for all onsets. However, the hard-onset predictions remain challenging.

(a) Model performance on UCDP dataset (2018–2023),
all onsets.

(b) Model performance on UCDP dataset (2018–2023),
hard onsets.

Figure 6.3: Precision–Recall AUC score comparison of models on the UCDP dataset for all onsets and hard
onsets.

6.4. Predictions into the real future

This section presents the predictions into the real future of our best model Stacked Weighted
ensemble model trained UCDP dataset. The model predicts the maximum risk of armed
conflict in the period from 2025–05 to 2026–04. To produce predictions into the real future,
we train the model of the data from 1990 to 2024–04 and predict the risk of armed conflict
based on the 2024–05, which was the latest month available at the time of analysis. Figure 6.4
depicts the risk predictions of our best model for covered country.

Analysing the predictions, we see that Sub-Saharan Africa is identified as the Epicenter of
Predicted Conflict. The model identifies several African nations as facing extreme conflict
risk, with Ethiopia leading at 0.911 risk probability Recent developments in Ethiopia’s Tigray
region validate this prediction, as renewed fighting between the Tigray People’s Liberation
Front and federal forces threatens to escalate into a broader regional war. The incomplete
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Figure 6.4: Our best model predictions of the armed conflict risk for covered countries based on inputs as of
May 2025.

implementation of the 2022 Pretoria Agreement has created power vacuums that both Eritrea
and Ethiopia are positioning to exploit.

Mali emerges as the second-highest risk country with a 0.910 probability, reflecting the
devastating reality of ongoing conflict since 2012. The country faces simultaneous challenges
from jihadist insurgencies, Tuareg rebellions, and the presence of foreign mercenary forces,
creating a complex multi-front conflict that has already displaced over two million people.
Recent attacks in 2024 have demonstrated the escalating brutality of the conflict, with civilian
casualties reaching unprecedented levels .

Burkina Faso, with a 0.910 risk score, has become the epicenter of armed group violence in the
Central Sahel region. The country now ranks first in the Global Terrorism Index, accounting
for nearly a quarter of all terrorist deaths globally. Armed groups control approximately half of
the national territory, implementing devastating blockades that have affected over one million
civilians across 46 locations[43].

Predictions for Europe and Asia regions also align with the current geopolitical landscape. The
prediction for Ukraine is 0.91, which reflect the continuation of the devastating conflict that
began with Russia’s 2022 invasion. Syria maintains a 0.906 risk level, indicating that despite
reduced international attention, the underlying conditions for renewed large-scale conflict
remain present . The country’s fractured state and presence of multiple foreign powers continue
to create instability that could rapidly escalate. Myanmar’s 0.908 risk score accurately reflects
the country’s descent into civil war following the 2021 military coup. The conflict has killed
over 50,000 people and displaced approximately three million, with resistance forces gaining
significant territorial control throughout 2024.

The model also identifies several Middle Eastern countries in high-risk categories. Afghanistan’s
0.907 score reflects ongoing instability under Taliban rule, while Iraq’s 0.898 rating indicates
persistent security challenges despite reduced international presence. At the same time,
Somalia’s inclusion with a 0.908 risk probability demonstrates the continued threat posed by
al-Shabaab and the complex regional dynamics involving Ethiopian intervention.
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Discussion

Currently, fully open-source academic models for early conflict forecasting are two years
behind state-of-the-art closed-source models. This work demonstrates that, despite this gap,
it is possible to catch up with and even slightly surpass current state-of-the-art models by
relying entirely on open-source tools, such as the AutoGluon framework, combined with
careful stacking and ensembling methods. This finding confirms the effectiveness of ensemble
techniques for conflict prediction, particularly given the unique challenges of this domain.

One critical insight from this research is the importance of careful modeling strategies due to
the nature of early conflict forecasting data. Conflict events are rare and highly imbalanced,
making accurate predictions especially challenging. A robust validation strategy, attentive
hyperparameter optimization, and careful handling of the data to avoid information leaks
proved essential to achieving strong predictive results.

However, significant challenges remain. Predicting the hard onsets (conflicts emerging in
historically stable countries after prolonged periods of peace), continues to be difficult. All
structural models struggle with accurately forecasting these rare events as historical patterns
offer limited predictive power. Recent promising attempts, such as the approach described
by Croicu and von der Maase [20], suggest potential for big improvements in combining
textual and structural data. The goal of such approach is to improve understanding of conflict
dynamics to better forecast hard onsets. However, these efforts currently still face limitations
related to data quality and computational resources. More high-quality, multimodal datasets
and refined methods for combining text-based and structural data are needed.

For policymakers, this work provides evidence that practical, data-driven forecasting models for
conflict are achievable. Yet, these models remain imperfect and carry inherent risks. Predicting
conflicts that never occur, so-called false positives, could lead to misallocated resources or
diplomatic tensions, while failing to predict an emerging conflict (false negatives) might allow
crises to escalate unnoticed. Consequently, predictions from early conflict warning models
should always be paired with human verification and expert analysis before informing critical
policy decisions.

For researchers interested in early conflict modeling, this work provides an openly available
framework, datasets, and detailed pipelines. By openly sharing the developed tools and
code, we encourage further research and refinement. Our hope is that the availability of
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these resources can help the research community accelerate advancements in early conflict
forecasting, promoting greater transparency, reproducibility, and collaboration in the field.

7.1. Ethical Considerations

From an ethical perspective, the potential societal benefits of early conflict warning are
substantial. Reliable, timely forecasts can help direct scarce preventive resources to places where
they are most likely to prevent loss of life, improve accountability in prioritisation, and make the
underlying trade-offs between false positives and false negatives explicit to decision-makers [15].
In practice, embedding model outputs in transparent decision frameworks—complete with
calibrated thresholds, clear uncertainty communication, and routine validation can support
earlier diplomatic engagement and targeted, less intrusive preventive action [25]. Open datasets
and reproducible pipelines also enable independent audit and continuous improvement of
models by a wider research and policy community, which is morally right when forecasts can
shape life-or-death decisions [16].

At the same time, forecasting tools are not neutral: they operate in reflexive, strategic
environments where information can alter behaviour. Publicly labelling countries or subregions
as “high risk” can discredit communities, shift capital and aid in harmful ways, or, under
certain political conditions, be invoked to justify pre-emptive repression. Text-driven features
inherit biases from news ecosystems (for example, censorship or uneven coverage), which
can skew risk assessments and distributive choices if left unexamined [16]. These concerns
reinforce long-standing cautions from the EWS field about “do no harm” practices, user-centred
design, and tight coupling between warnings and appropriate, proportionate responses [25].
Accordingly, we view open production forecasting as ethically defensible only with safeguards:
publish uncertainty and model limits alongside any scores; audit for bias and drift; document
data sources; restrict highly granular outputs when they could increase targeting risks; and
establish governance for responsible use (including red-teaming and after-action reviews) so
that forecasts inform prevention rather than inadvertently escalating conflict dynamics [15],
[44], [45].



8
Conclusion & Future Work

In this work, we applied and evaluated multiple machine learning models applied to the early
conflict forecasting domain and caught up the open source models with the Conflict Forecast
state-of-the-art models without having access to the full dataset with the news topics. In
order to match the performance of state-of-the-art models, we built a robust, reproducible
and extensible framework for early conflict prediction, as well as our custom pipelines to build
datasets and evaluate models. Our goal was to contribute to a future where conflicts can
be reliably anticipated and proactively mitigated with the improved early conflict warning
systems.

We achieved five key contributions:

• We developed a flexible framework for Early Conflict Modelling, enabling streamlined
training, evaluation, and benchmarking of predictive models.

• We implemented a training and evaluation pipelines for state-of-the-art machine learning
models applied to the task of early conflict forecasting. We covered diverse range of
models starting from tree-based Random Forest models, and including an automated
machine learning framework and a tabular foundation model.

• We reproduced the historical dataset pipeline used by the Conflict Forecast team, allowing
for fair comparisons and further reproducibility in the field.

• We built a model that not only catches up with but slightly outperforms the best existing
Conflict Forecast baseline, demonstrating competitive results for country-level forecasts.

• We tested multiple approaches and we reported unsuccessful attempts to combine text
data with structural data to allow future researches to reuse our news datasets and
pipelines.

Despite the advancements, our findings underscore the limitations of purely structural and
tabular machine learning approaches when tackling the complex problem of armed conflict
prediction. While such models offer valuable signals, they often fall short in capturing the
nuanced socio-political dynamics and fast-evolving realities that precede conflict. This leads
to limited accuracy on, arguably, the most valuable aspect of proactive conflict prediction -
emergence of conflict in countries with a long history of peace (so called hard onsets).
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We believe the next major leap in early conflict forecasting will come from integrating structural
data with the contextual intelligence of large language models. These models offer the capability
to ingest and interpret high-quality political research, historical relationships, and real-time
geopolitical developments present in news and policy documents. LLMs can grasp latent
factors such as diplomatic tensions, alliances, rhetoric, and public sentiment—elements that
are difficult to encode explicitly in tabular data.

Our future work will focus on building a hybrid forecasting architecture that combines these
strengths: the quantitative rigor of structured indicators and the qualitative depth of natural
language understanding. By linking LLM-derived insights with structural predictors, we aim
to enable earlier, more precise, and context-aware conflict forecasts. We believe such systems
are a crucial step toward proactive peacebuilding and, eventually, global stability.
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A
UCDP Pipeline Implementation details

This appendix outlines the full data engineering pipeline developed to reconstruct the Conflict
Forecast historical dataset using publicly available UCDP data. The pipeline consists of 16
sequential steps, each transforming and enriching the dataset toward a structure suitable for
early conflict modeling. Each step is a separate implementation in Python or R, available to
the reader. Below we describe each step in detail:

Step 1: Download Raw UCDP Data

We begin by programmatically downloading the most recent UCDP GED (Georeferenced
Event Dataset) and Candidate GED files. These files include finalized and provisional conflict
events. All downloads are stored locally for consistent preprocessing.

Step 2: Add Lacking Countries

Certain countries are missing from the UCDP source but exist in Conflict Forecast with all 0
fatalities. To understand which countries should be added for for which periods, we merge in
conflict rows from latest Conflict Forecast data for post-2010 months and the 2022 Conflict
Forecast dataset for pre 2010 months, allowing us to reconstruct such countries.

Step 3: Fix Country Time Series Lengths

Some countries in UCDP dataset may have fatalities recorded earlier or later than the country
starts existing according to Conflict Forecast definitions. To remain consistent with Conflict
Forecast, we adjust country time series by tracking which months are included for which
countries in the original Conflict Forecast datasets. For example, countries like South Sudan,
Kosovo, and others that were not existent in 1989 are set to be excluded up until their first
appearance in either UCDP or Conflict Forecast data.
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Step 4: Fix Fatality Values

This step corrects known anomalies in the fatality data. For instance, we set all fatalities
for Serbia to zero, following the behavior observed in Conflict Forecast preprocessing. These
corrections ensure the consistency of fatality values across the datasets for some selected
problematic countries.

Step 5: Add Population Data

Monthly population estimates are constructed by merging World Bank data (1989–2009) with
our dataset. Missing countries and years are filled by interpolation and backfilling, ensuring
population coverage across the entire time span.

Step 6: Assign COW Country Codes

We map ISO3C country codes to their corresponding COW (Correlates of War) numeric codes.
Manual corrections are applied for countries with inconsistent mappings. These codes are used
later to generate neighbor-based features using geographic proximity.

Step 7: Compute Armed Conflict and Discounted Features

We compute binary indicators for each country-month: armedconf (if fatalities per million
exceed 0.5), and anyviolence (if any fatalities are recorded). Exponentially discounted
versions of these indicators are calculated using a decay factor of 0.95, to match discounted_*
variables in Conflict Forecast.

Step 8: Generate Neighbor-Based Features

Using the Correlates of War minimum distance matrix, we compute regional spillover features.
These include neighbor-averaged versions of the discounted conflict variables. For each country,
we calculate the average of discounted_armedconf and discounted_anyviolence for all
countries that share a border (minimum distance is exactly 0). In case a country has no
neighbors, the feature is set to zero. Neighboring dynamics are a key component in identifying
contagion effects in regional violence.

We introduce some corrections to the Correlates of War minimum distance matrix to be able to
precisely follow the unpublished distance matrix used in Conflict Forecast. These corrections
are stored in a separate configurations file.

Step 9: Civil War Indicator

We define a civil war as any month in which fatalities exceed 0.003% of a country’s population.
This binary civilwar variable helps isolate high-intensity conflict months and serves as a
basis for several temporal indicators in future steps.
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Step 10: Ongoing Conflict Features

We compute ongoing feature for each binary conflict type (anyviolence, armedconf, civilwar)
that implemented as a counter that record the number of consecutive months the country has
experienced that type of conflict. These counters are reset when the conflict ends.

Step 11: Months Since Last Conflict

Complementing the ongoing counters, we calculate the number of months since each type
of conflict last occurred. These since features provide a memory of peaceful periods. Man-
ual adjustments are applied for edge cases where countries were historically excluded or
underrepresented.

Step 12: Rolling Fatalities Features

We compute rolling sums of fatalities per capita over multiple past windows (e.g., 3, 6, 12,
24 months), scaled per 1,000 people. These “past_bestpc” features quantify recent violence
intensity.

Step 13: Period Identifier

To simplify monthly indexing and ensure alignment with external datasets, we create a period
variable in YYYY–MM format that precisely follow the period definitions used in Conflict
Forecast.

Step 14: Target Variable

We define the dependent variable (ons_armedconf_12_target) as an indicator for conflict
onset within the next 12 months, provided the current month is peaceful. The full definition
is described in Section 4.1. If a conflict is already ongoing, the target is masked as missing.
Additionally, the final 12 months of data are masked to prevent future leakage during model
training.

Step 15: Attach Conflict Forecast Predictions

To enable benchmarking, we merge in historical predictions from the Conflict Forecast models,
including their text-only, historical-only, and full-feature versions. These predictions are used
for validation and performance comparisons throughout the thesis.

Step 16: Select Final Columns

Finally, we select the subset of variables defined as historical features. Intermediate columns
and temporary features are dropped, and the final processed dataset is saved. This cleaned
dataset serves as the basis for all model training and evaluation in this work.



B
ROC-AUC Scores for all models

This appendix provides the detailed Receiver-Operator AUC (ROC-AUC) scores for all models
evaluated in this work for the three datasets: ViEWS, Conflict Forecast, and UCDP. As
described in the Section 3 and Section 4.1, ROC-AUC is not a representative metric for the
imbalanced datasets, but we still report it for the reproducibility and benchmarking reference.

Analysing the ROC-AUC scores, we see that the results are generally inline with the Precision-
Recall AUC scores reported in the Section 6 with minor differences. Our best model still
dominates the ROC-AUC scores, which is in line with the expectations.

B.1. ViEWS Dataset ROC-AUC Scores

This subsection in the Figure B.1 presents the ROC-AUC scores for all models evaluated on
the ViEWS dataset from 2018 to 2023.

(a) Model performance on ViEWS dataset
(2018–2023), all onsets.

(b) Model performance on ViEWS dataset
(2018–2023), hard onsets.

Figure B.1: ROC-AUC score comparison of models on the ViEWS dataset for all onsets and hard onsets.
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B.2. Conflict Forecast Dataset ROC-AUC Scores

This subsection in the Figure B.2 presents the ROC-AUC scores for all models evaluated on
the Conflict Forecast dataset from 2018 to 2023.

(a) Model performance on Conflict Forecast
dataset (2018–2023), all onsets.

(b) Model performance on Conflict Forecast
dataset (2018–2023), hard onsets.

Figure B.2: ROC-AUC score comparison of models on the Conflict Forecast dataset for all onsets and hard
onsets.

B.3. UCDP Dataset ROC-AUC Scores

This subsection in the Figure B.3 presents the ROC-AUC scores for all models evaluated on
the UCDP dataset from 2018 to 2023.

(a) Model performance on UCDP dataset
(2018–2023), all onsets.

(b) Model performance on UCDP dataset
(2018–2023), hard onsets.

Figure B.3: ROC-AUC score comparison of models on the UCDP dataset for all onsets and hard onsets.
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